Answer:
C. Plant A orbits its star faster than Plant B
Explanation:
Did it on study island
The coefficient of static friction between the chair and the floor is 0.67
Explanation:
Given:
Weight of the chair = 25kg
Force = 165 N (F_applied)
Force = 127 N (F_max)
To find: Coefficient of static friction
The “coefficient of static friction” between a chair and the floor is defined as the ration of maximum force to the normal force acting on the chair
μ_s=
The F_n is equal to the weight multiplied by its gravity
∴
=mg
Thus the coefficient of static friction changes as
μ_s=
μ_{s} = 
= 0.67
The gravitational acceleration of a planet is proportional to the planet's mass, and inversely proportional to square of the planet's radius.
So when you stand on the surface of this particular planet, you feel a force of gravity that is
(1/2) / (3²)
of the force that you feel on the surface of the Earth.
That's <em>(1/18)</em> as much as on Earth.
The acceleration of gravity there would be about <em>0.545 m/s²</em>.
This is about 12% less than the gravity on Pluto.
This question is based on the fundamental assumption of vector direction.
A vector is a physical quantity which has magnitude as well direction for its complete specification.
The magnitude of a physical quantity is simply a numerical number .Hence it can not be negative.
A negative vector is a vector which comes into existence when it is opposite to our assumed direction with respect to any other vector. For instance, the vector is taken positive if it is along + X axis and negative if it is along - X axis.
As per the first option it is given that a vector is negative if its magnitude is greater than 1. It is not correct as magnitude play no role in it.
The second option tells that the magnitude of the vector is less than 1. Magnitude can not be negative. So this is also wrong.
Third one tells that a vector is negative if its displacement is along north. It does not give any detail information about the negativity of a vector.
In a general sense we assume that vertically downward motion is negative and vertically upward is positive. In case of a falling object the motion is vertically downward. So the velocity of that object is negative .
So last option is partially correct as the vector can be negative depending on our choice of co-ordinate system.