Given:
A(-5,4)
B(3,4)
C(3,-5)
So point D is:
so point D is (-5,-5)
For AB is
Distance between two point is:
![\begin{gathered} (x_1,y_1)and(x_2,y_2) \\ D=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%28x_1%2Cy_1%29and%28x_2%2Cy_2%29%20%5C%5C%20D%3D%5Csqrt%5B%5D%7B%28x_2-x_1%29%5E2%2B%28y_2-y_1%29%5E2%7D%20%5Cend%7Bgathered%7D)
so distance between A(-5,4) and B(3,4) is:
![\begin{gathered} D=\sqrt[]{(3-(-5))^2+(4-4)^2} \\ =\sqrt[]{(8)^2+0^2} \\ =8 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20D%3D%5Csqrt%5B%5D%7B%283-%28-5%29%29%5E2%2B%284-4%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B%288%29%5E2%2B0%5E2%7D%20%5C%5C%20%3D8%20%5Cend%7Bgathered%7D)
So AB is 8 unit apart.
For B(3,4) and C(3,-5).
![\begin{gathered} D=\sqrt[]{(3-3)^2+(-5-4)^2} \\ =\sqrt[]{0^2+(-9)^2} \\ =9 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20D%3D%5Csqrt%5B%5D%7B%283-3%29%5E2%2B%28-5-4%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B0%5E2%2B%28-9%29%5E2%7D%20%5C%5C%20%3D9%20%5Cend%7Bgathered%7D)
So BC is 9 unit apart.
For fourth bush point is (-5,-5) it left of point C(3,-5) is:
![\begin{gathered} D=\sqrt[]{(3-(-5))^2+(-5-(-5))^2} \\ =\sqrt[]{(8)^2+0^2} \\ =8 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20D%3D%5Csqrt%5B%5D%7B%283-%28-5%29%29%5E2%2B%28-5-%28-5%29%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B%288%29%5E2%2B0%5E2%7D%20%5C%5C%20%3D8%20%5Cend%7Bgathered%7D)
so fourth bush is 8 unit left of C.
For fourth bush(-5,-5) below to point A(-5,4)
![\begin{gathered} D=\sqrt[]{(-5-(-5))^2+(4-(-5))^2} \\ =\sqrt[]{0^2+9^2} \\ =9 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20D%3D%5Csqrt%5B%5D%7B%28-5-%28-5%29%29%5E2%2B%284-%28-5%29%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B0%5E2%2B9%5E2%7D%20%5C%5C%20%3D9%20%5Cend%7Bgathered%7D)
so fourth bush 9 units below of A.
Answer:
4z - 15
4(3) - 15
12 - 15
= -3
High school math? really?
Answer:
2 x 5 = 10, 10 x 2 = 20
4 x 2 = 8, 8 x 2 = 16
5 x 4 = 20, 20 x 2 = 40
40 + 20 + 16 = 76 yd^2 is your answer.
y-intercept: Let x = 0 and solve for y:
(x-1)^2 + (y-2)^2 = 10 => (-1)^2 + y^2 - 4y + 4) = 10
=> 1 + y^2 - 4y + 4 = 10, or y^2 - 4y -5 = 0
The solutions of this quadratic are y = 5 and y = -1.
Thus, the y-intercepts are (0, 5) and (0, -1).
Now find the x-intercepts: Let y = 0 and solve the resulting equation for x:
(x-1)^2 = 10 - (-2)^2, or (x-1)^2 = 10 - 4 = 6.
Taking the sqrt of both sides, x - 1 = plus or minus sqrt(6), or:
x = 1 +√6 and x = 1 - √6, so that the x-intercepts
are (1+√6, 0) and (1-√6, 0).
Answer:
1,888 pencils
Step-by-step explanation: