Check the picture below.

so the object hits the ground when h(x) = 0, hmmm how long did it take to hit the ground the first time anyway?

now, we know the 2nd time around it hit the ground, h(x) = 0, but it took less time, it took 0.5 or 1/2 second less, well, the first time it took 3/2, if we subtract 1/2 from it, we get 3/2 - 1/2 = 2/2 = 1, so it took only 1 second this time then, meaning x = 1.
![\bf ~~~~~~\textit{initial velocity in feet} \\\\ h(x) = -16x^2+v_ox+h_o \quad \begin{cases} v_o=\textit{initial velocity}&0\\ \qquad \textit{of the object}\\ h_o=\textit{initial height}&\\ \qquad \textit{of the object}\\ h=\textit{object's height}&0\\ \qquad \textit{at "t" seconds}\\ x=\textit{seconds}&1 \end{cases} \\\\\\ 0=-16(1)^2+0x+h_o\implies 0=-16+h_o\implies 16=h_o \\\\[-0.35em] ~\dotfill\\\\ ~\hfill h(x) = -16x^2+16~\hfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~%5Ctextit%7Binitial%20velocity%20in%20feet%7D%20%5C%5C%5C%5C%20h%28x%29%20%3D%20-16x%5E2%2Bv_ox%2Bh_o%20%5Cquad%20%5Cbegin%7Bcases%7D%20v_o%3D%5Ctextit%7Binitial%20velocity%7D%260%5C%5C%20%5Cqquad%20%5Ctextit%7Bof%20the%20object%7D%5C%5C%20h_o%3D%5Ctextit%7Binitial%20height%7D%26%5C%5C%20%5Cqquad%20%5Ctextit%7Bof%20the%20object%7D%5C%5C%20h%3D%5Ctextit%7Bobject%27s%20height%7D%260%5C%5C%20%5Cqquad%20%5Ctextit%7Bat%20%22t%22%20seconds%7D%5C%5C%20x%3D%5Ctextit%7Bseconds%7D%261%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%200%3D-16%281%29%5E2%2B0x%2Bh_o%5Cimplies%200%3D-16%2Bh_o%5Cimplies%2016%3Dh_o%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20~%5Chfill%20h%28x%29%20%3D%20-16x%5E2%2B16~%5Chfill)
quick info:
in case you're wondering what's that pesky -16x² doing there, is gravity's pull in ft/s².
ex: 5/25=1/5
5 divided by 5 is and 25 divided by 5 is 5.
1.Write down the factors for the numerator(top number) and the denominator(the number down below).
2.Find the largest factor that is common between the two.
3.Divide the numerator and denominator by the greatest common factor.
4.Write down the reduced fraction.
Hope this helps
the answer for number 1 is
10,962,500,000