Answer: radon (atomic mass 222 amu
Explanation:
To calculate the rate of diffusion of gas, we use Graham's Law.
This law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows:
atomic mass of krypton= 83.8 amu
atomic mass of argon= 39.95 amu
atomic mass of xenon = 131.3 amu
atomic mass of radon= 222 amu
Thus as atomic mass of radon is highest, its rate of diffusion is slowest.
Answer:


Explanation:
<u>First mixture</u>:
40 wt% methanol - 60 wt% water 200 kg


<u>Second mixture</u>:
70 wt% methanol - 30 wt% water 150 kg


Final mixture:




If, the compositions are constant, the only variables are the mass of each mixture used in the final one, so there can be only one independent balance.
Explanation:
In the molecular equation for a reaction, all of the reactants and products are represented as neutral molecules (even soluble ionic compounds and strong acids). In the complete ionic equation, soluble ionic compounds and strong acids are rewritten as dissociated ions.
The net ionic equation is a chemical equation for a reaction that lists only those species participating in the reaction. The net ionic equation is commonly used in acid-base neutralization reactions, double displacement reactions, and redox reactions.
Answer:
The conversion factor is 14.79 mL/Tbsp.
Explanation:
To do an unity conversiton, we can make a factor by a ratio transformation:

So, the conversion factor is 14.79 mL/Tbsp and 3 Tbsp has 44.37 mL.
1. Ca(HCO3)2
2.Ca(HCOO)2
3. Ca(OH)2
4.NaOH
5.KCI
6.MgSO4
7.PbO
8.HCl
9.HNO3
10.H2SO4
11.NH3
12.(NH4)3PO4
13.NaOH
:)