1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Snezhnost [94]
3 years ago
5

A 5.45-g combustible sample is burned in a calorimeter. the heat generated changes the temperature of 555 g of water from 20.5°c

to 39.5°c. how much energy is released by the burning? the specific heat of water is 4.18 j/ (°c × g). 564 j 2,500 j 44,100 j 138,000 j
Physics
1 answer:
Y_Kistochka [10]3 years ago
3 0
Given:
m = 555 g, the mass of water in the calorimeter
ΔT = 39.5 - 20.5 = 19 °C, temperature change
c = 4.18 J/(°C-g), specific heat of  water

Assume that all generated heat goes into heating the water.
Then the energy released is
Q = mcΔT
    = (555 g)*(4.18 J/(°C-g)*(19 °C)
    = 44,078.1 J
    = 44,100 J (approximately)

Answer:  44,100 J

You might be interested in
Explain the Big Bang and how it started
AlexFokin [52]

The big bang is how astronomers explain the way the universe began. It is the idea that the universe began as just a single point, then expanded and stretched to grow as large as it is right now (and it could still be stretching).

7 0
3 years ago
Read 2 more answers
Imagine a system where a block rests on an inclined plane. The block is then given an initial push so that it starts sliding dow
Helen [10]

Answer:

statement - 'The work done by friction is equal to the sum of the work done by the gravity and the initial push' is correct.

Explanation:

The statement ''The work done by friction is equal to the sum of the work done by the gravity and the initial push" is correct.

The above statement is correct because, the initial push will tend to slide down the block thus the work done by the initial push will be in the downward direction. Also, the gravity always acts in the downward direction. thus, the work done done by the gravity will also be in the downward direction

here, the downward direction signifies the downward motion parallel to the inclined plane.

Now we know that the work done by the friction is against the direction of motion. Thus, the friction force will tend to move the block up parallel to the inclined plane.

Hence, for the block to stop sliding the the above statement should be true.

6 0
3 years ago
Radioactive isotopes can be used to find the age of rocks, fossils, or other artifacts. Carbon-14 has a half-life of 5,730 years
bazaltina [42]

Answer:

1/8 = (1/2)^3

This implies the sample has decayed for 3 half lives

3 * 5730 yrs = 17,200 years

8 0
2 years ago
Light with wavelength in air ( lambdaair ) is incident on a oil slick ( noil = 1. 25) floating on the ocean ( nwater = 1. 33). w
crimeas [40]

<u>26mm</u> is the thinnest thickness of oil that will brightly reflect the light.

What is wavelength ?

The distance over which a periodic wave's shape repeats is known as the wavelength in physics.  It is a property of both traveling waves and standing waves as well as other spatial wave patterns. It is the distance between two successive corresponding locations of the same phase on the wave, such as two nearby crests, troughs, or zero crossings.  The spatial frequency is the reciprocal of wavelength. The Greek letter lambda () is frequently used to represent wavelength. The term wavelength is also occasionally used to refer to modulated waves, their sinusoidal envelopes, or waves created by the interference of several sinusoids.

To learn more about wavelength visit:

brainly.com/question/16051869

#SPJ4

4 0
2 years ago
Within the theory of G relativity what, exactly, is meant by " the speed of light WITHIN A VACUUM" ? &amp; what does that have t
Ber [7]
The speed of light "within a vacuum" refers to the speed of electromagnetic radiation propagating in empty space, in the complete absence of matter.  This is an important distinction because light travels slower in material media and the theory of relativity is concerned with the speed only in vacuum.  In fact, the theory of relativity and the "speed of light" actually have nothing to do with light at all.  The theory deals primarily with the relation between space and time and weaves them into an overarching structure called spacetime.  So where does the "speed of light" fit into this?  It turns out that in order to talk about space and time as different components of the same thing (spacetime) they must have the same units.  That is, to get space (meters) and time (seconds) into similar units, there has to be a conversion factor.  This turns out to be a velocity.  Note that multiplying time by a velocity gives a unit conversion of
seconds \times  \frac{meters}{seconds} =meters
This is why we can talk about lightyears.  It's not a unit of time, but distance light travels in a year.  We are now free to define distance as a unit of time because we have a way to convert them.  
As it turns out light is not special in that it gets to travel faster than anything else.  Firstly, other things travel that fast too (gravity and information to name two).  But NO events or information can travel faster than this.  Not because they are not allowed to beat light to the finish line---remember my claim that light has nothing to do with it.  It's because this speed (called "c") converts space and time.  A speed greater than c isn't unobtainable---it simply does not exist.  Period.  Just like I can't travel 10 meters without actually moving 10 meters, I cannot travel 10 meters without also "traveling" at least about 33 nanoseconds (about the time it takes light to get 10 meters)  There is simply no way to get there in less time, anymore than there is a way to walk 10 meters by only walking 5.  
We don't see this in our daily life because it is not obvious that space and time are intertwined this way.  This is a result of our lives spent at such slow speeds relative to the things around us.
This is the fundamental part to the Special Theory of Relativity (what you called the "FIRST" part of the theory)  Here is where Einstein laid out the idea of spacetime and the idea that events (information) itself propagates at a fixed speed that, unlike light, does not slow down in any medium.  The idea that what is happening "now" for you is not the same thing as what is "now" for distant observers or observers that are moving relative to you.  It's also where he proposed of a conversion factor between space and time, which turned out to be the speed of light in vacuum.
3 0
3 years ago
Other questions:
  • Which scientist first proposed physical laws to mathematically describe the effect of forces on the motions of bodies?
    10·2 answers
  • What is the total energy equation?
    9·1 answer
  • The mass of Planet X is one-tenth that of the earth, and its diameter is one-half that of the earth. the acceleration due to gra
    12·1 answer
  • What is the total resistance for the circuit? (must include unit - ohms)
    10·1 answer
  • A brave child decides to grab onto an already spinning merry‑go‑round. The child is initially at rest and has a mass of 25.5 kg.
    5·1 answer
  • A student in Denver (altitude = 1 mile = 1609 m above sea level) brings a physics book of mass 1.3 kg to the top of a ten story
    6·1 answer
  • An object is dropped from a height H. During the final second of its fall, it traverses a distance of 53.2 m. What was H? An obj
    11·1 answer
  • Please help<br>What is the angle of the reflected ray in the diagram above?​
    11·1 answer
  • Rubbing two objects together turns the energy of motion into heat energy because of _____
    8·2 answers
  • Which of the following is TRUE regarding the development and growth of new neurons in the human brain?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!