Answer:
Explanation:
Let the tension in the cord be T₁ and T₂ .
for motion of block placed on horizontal table
T₁ = m a , a is acceleration of the whole system .
for motion of hanging bucket of mass m
mg - T₂ = ma
adding the two equation
mg + T₁- T₂ = 2ma
for rotational motion of the pulley
torque = moment of inertia x angular acceleration
(T₂ - T₁) R = I x α , I is moment of inertia of pulley , α is angular acceleration .
(mg - 2ma ) R = I x α
(mg - 2ma ) R = I x a / R
(mg - 2ma ) R² = I x a
mgR² = 2ma R² + I x a
a = mgR² / (2m R² + I )
Since body moves by distance d in time T
d = 1/2 a T²
a = 2d / T²
mgR² / (2m R² + I ) = 2d / T²
mgR²T² = 2d x (2m R² + I )
mgR²T² - 4dm R² = 2dI
m R² ( gT² - 4d ) = 2dI
I = m R² ( gT² - 4d ) ] / 2d .
Explanation:
let's assume that:
v1= 600ml=0,6l
T1=27°C= 300K
p1=700mmHG=93326Pa
T2=-20°C=253K
p2=500mmHg=66661
V2=?
p1V1/T1=p2V2/T2 => V2=p1V1T2/p2
V2= 93326*0,6*253/66661
V2=212,52l
The image distance is 59.2 cm and the image is real and small.
<h3>
Image distance</h3>
The distance of the image formed by the convex or converging lens is determined by applying the following lens equation.
1/f = 1/u + 1/v
where;
- f is the focal length = 34 cm
- u is the object distance = 80 cm
- v is the image distance = ?
1/v = 1/f - 1/u
1/v = 1/34 - 1/80
1/v = 0.0294 - 0.0125
1/v = 0.0169
v = 1/0.0169
v = 59.2 cm
Thus, the image distance is 59.2 cm and the image is real and small.
Learn more about convex lens here: brainly.com/question/10153605
Answer:
In the case of the blackish-yellow powder, the black color is due to the presence of a iron and yellow color is due to sulfur. As the iron has retained its original properties it has got attached to the magnet. Thus the blackish-yellow powder is considered a mixture.
Explanation:
mark me brainliest
Im pretty sure it’s a because it makes more sense you know?.