This is the part of where you can easily slip away
Answer:
D. 2^(3/2)
Explanation:
Given that
T² = A³
Let the mean distance between the sun and planet Y be x
Therefore,
T(Y)² = x³
T(Y) = x^(3/2)
Let the mean distance between the sun and planet X be x/2
Therefore,
T(Y)² = (x/2)³
T(Y) = (x/2)^(3/2)
The factor of increase from planet X to planet Y is:
T(Y) / T(X) = x^(3/2) / (x/2)^(3/2)
T(Y) / T(X) = (2)^(3/2)
Answer: Real image
Explanation:
converging lens will only produce a real image if the object is located beyond the focal point (i.e., more than one focal length away).
Answer:
I'm not a genius ok?
Explanation:
1. Radar communication, Analysis of the molecular and atomic structure, telephone communication
2. c
Answer:
143.352 watt.
Explanation:
So, in the question above we are given the following parameters or data or information that is going to assist us in answering the question above efficiently. The parameters are:
"A 1.8 m wide by 1.0 m tall by 0.65m deep home freezer is insulated with 5.0cm thick Styrofoam insulation"
The inside temperature of the freezer = -20°C.
Thickness = 5.0cm = 5.0 × 10^-2 m.
Step one: Calculate the surface area of the freezer. That can be done by using the formula below:
Area = 2[ ( Length × breadth) + (breadth × height) + (length × height) ].
Area = 2[ (1.8 × 0.65) + (0.65 × 1.0) + (1.8 × 1.0)].
Area = 7.24 m^2.
Step two: Calculate the rate of heat transfer by using the formula below;
Rate of heat transfer =[ thermal conductivity × Area (T1 - T2) ]/ thickness.
Rate of heat transfer = 0.022 × 7.24(25+20)/5.0 × 10^-2 = 143.352 watt.