1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erik [133]
3 years ago
10

Ive never been good with these kind of questions

Mathematics
1 answer:
bearhunter [10]3 years ago
8 0

Answer:

The answer to your question is Equation   y = -4x - 6   Slope -4

                                                     Point = (1 , -5)

Step-by-step explanation:

Data

Point = (1 , -5)

Process

1.- Get another point from the line

-This point is B = (0, -1)

2.- Get the slope of the line

Formula

          m = (y2 - y1) / (x2 - x1)

  x1 = 1   y1 = -5   x2 = 0   y2 = -1

-Substitution

           m = (-1 + 5) / (0 - 1)

-Simplification

           m = 4/-1

-Result

           m = -4

3.- Find the equation of the line

Formula

            y - y1 = m(x - x1)

-Substitution

           y + 5 = -4(x - 1)

-Simplification

           y + 5 = -4x - 1

-Solve for y

          y = -4x - 1 - 5

-Result

          y = -4x - 6

You might be interested in
Find the limit
Lana71 [14]

Step-by-step explanation:

<h3>Appropriate Question :-</h3>

Find the limit

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

On substituting directly x = 1, we get,

\rm \: = \: \sf \dfrac{1-2}{1 - 1}-\dfrac{1}{1 - 3 + 2}

\rm \: = \sf \: \: - \infty \: - \: \infty

which is indeterminant form.

Consider again,

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

can be rewritten as

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 3x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 2x - x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( x(x - 2) - 1(x - 2))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ {(x - 2)}^{2} - 1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 2 - 1)(x - 2 + 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)(x - 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)}{x(x - 2)}\right]

\rm \: = \: \sf \: \dfrac{1 - 3}{1 \times (1 - 2)}

\rm \: = \: \sf \: \dfrac{ - 2}{ - 1}

\rm \: = \: \sf \boxed{2}

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right] = 2 \: }}

\rule{190pt}{2pt}

7 0
2 years ago
Read 2 more answers
Solve the following systems of equations 2a+4b+c=5 ; a-4b=-6 ; 2b+c=7.
SOVA2 [1]

Answer:

a = -2

b = 1

c = 5

Step-by-step explanation:

Given:

2a + 4b + c = 5 ............(1)

a - 4b = - 6

or

a = 4b - 6 .............(2)

2b + c = 7

or

c = 7 - 2b   ...........(3)

substituting 2 and 3 in  1, we get

2(4b - 6 ) + 4b + (7 - 2b) = 5

or

8b - 12 + 4b + 7 - 2b = 5

or

10b - 5 = 5

or

b = 1

substituting b in 2, we get

a = 4(1) - 6

or

a = -2

substituting b in 3, we get

c = 7 - 2(1)

or

c = 5

thus,

a = -2

b = 1

c = 5

8 0
3 years ago
Sorry this is the last one! Help for brainliest answer
laila [671]

Answer:

5, 6, 9, 15

Also:

Plz mark me brainliest :)

6 0
2 years ago
Read 2 more answers
What is the value of the expression 9 × 2 + 2 × 5²
NARA [144]

9 \times 2 + 2 \times  {5}^{2}  \\  = 18 + 2 \times 25 \\  = 18 + 50 \\  = 68

6 0
2 years ago
Read 2 more answers
Please show work and be done soon
stich3 [128]

9514 1404 393

Answer:

  x = 22.5°

Step-by-step explanation:

Angle BED ≅ angle EBC = 6x, so angle BEA = 4x. The angles FEB and BEA form a linear pair, so we have ...

  4x +4x = 180°

  x = 22.5° . . . . . . divide by 8

_____

BED and EBC are "alternate interior angles" with respect to transversal BE crossing parallel lines DE and AC.

8 0
2 years ago
Other questions:
  • Complete the equation of the line through (2, -2) and (4,1)
    6·1 answer
  • How do you get the answer88-43.7
    8·1 answer
  • Solve for X, 3^x + 3^2 = 90​
    5·1 answer
  • What is the numerator of the fraction equivalent to 3\5 that has a denominator of 30
    7·1 answer
  • C<br> 8 yd<br> 6 yd<br> What is the length of the hypotenuse?
    9·1 answer
  • Which of the question below could be the equation of this parabola ?
    15·1 answer
  • A system of equations is graphed on the coordinate plane.
    10·2 answers
  • If 30.s g of milk contains 18 C, how many
    12·2 answers
  • A room that measures 12 feet by 9 feet needs new flooring. Wood flooring costs $2.70 per square foot. How much will it cost to c
    15·2 answers
  • Which describes a transformation using rotation?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!