The answer is six equal sized links because two, three, and six, are all factors of six.
Answer:
3xz5+2x+4y−2z
Step-by-step explanation:
2x−5y+3z5x+9y−2z
=2x+−5y+3xz5+9y+−2z
Combine Like Terms:
=2x+−5y+3xz5+9y+−2z
=(3xz5)+(2x)+(−5y+9y)+(−2z)
=3xz5+2x+4y+−2z
Hello,
Your answer would be D.
First of all, I'm going to assume that we have a concave down parabola, because the stream of water is subjected to gravity.
If we need the vertex to be at
, the equation will contain a
term.
If we start with
we have a parabola, concave down, with vertex at
and a maximum of 0.
So, if we add 7, we will translate the function vertically up 7 units, so that the new maximum will be 
We have

Now we only have to fix the fact that this parabola doesn't land at
, because our parabola is too "narrow". We can work on that by multiplying the squared parenthesis by a certain coefficient: we want

such that:
Plugging these values gets us

As you can see in the attached figure, the parabola we get satisfies all the requests.