Answer:
The magnitude of the large object's momentum change is 3 kilogram-meters per second.
Explanation:
Under the assumption that no external forces are exerted on both the small object and the big object, whose situation is described by the Principle of Momentum Conservation:
(1)
Where:
,
- Initial and final momemtums of the small object, measured in kilogram-meters per second.
,
- Initial and final momentums of the big object, measured in kilogram-meters per second.
If we know that
,
and
, then the final momentum of the big object is:


The magnitude of the large object's momentum change is:


The magnitude of the large object's momentum change is 3 kilogram-meters per second.
Answer:
When white light passes through the prism ,different colours suffers deviation through different angles and light appears to be dispersed. But in a hollow prism dispersion does not take place as all the colours travel with same speed in the air inside hollow prism. Thus no angular dispersion is there.
Answer:
<em>c. The astronaut does not need to worry: the charge will remain on the outside surface.</em>
<em></em>
Explanation:
The astronaut need not worry because <em>according to Gauss's law of electrostatic, a hollow charged surface will have a net zero charge on the inside.</em> This is the case of a Gauss surface, and all the charges stay on the surface of the metal chamber. This same principle explains why passengers are safe from electrostatic charges, in an enclosed aircraft, high up in the atmosphere; all the charges stay on the surface of the aircraft.
Answer:
bro I'm sorry I'm only in 7th grade