Answer:
V0=27.4 m/s; t=0.8 s
Explanation:
Final position y=37.0 m, time = 2.3 s; Initial position is set to be zero. We calculate the initial speed with the kinematics equation:
We solve for initial speed

Now, using the same expression we estimated time to first reach 18.5 m :
Second order equation with solutions
t1=0.8 s and t2=4.8 s
The first time corresponds to the first reach.
It might be pull at a force of 100 N. I might be wrong.
The electric potential between the two charges is 91.68 V.
<h3>
Electric potential between the two charges</h3>
The electric potential between the two charges is calculated as follows;
V = Ed
where;
- V is electric potential
- E is electric field
- d is the distance of the charge
Substitute the given parameters and solve for electric potential,
V = 573 N/c x 0.16 m
V = 91.68 V
Thus, the electric potential between the two charges is 91.68 V.
Learn more about electric potential here: brainly.com/question/26978411
#SPJ4
Answer:
The spectra are consistent with a structure in which the nitric acid forms a near-linear, 1.78 Å hydrogen bond to the oxygen of the water.
Explanation:
Hope this helps you