Answer:
by straining that muscle it can slow down the amount of muscle your supposed to get
Explanation:
Answer:
μ = mg/kx
Explanation:
Since the bock does not slip, the frictional force equals the weight of the block. So, F = mg. Now, the frictional force, F = μN where μ = coefficient of static friction and N = Normal force.
Now, the normal force equals the spring force F' = kx where k = spring constant and x = compression of spring.
N = F' = kx
So, F = μN = μkx
μkx = mg
So, μ = mg/kx
Wow ! This is not simple. At first, it looks like there's not enough information, because we don't know the mass of the cars. But I"m pretty sure it turns out that we don't need to know it.
At the top of the first hill, the car's potential energy is
PE = (mass) x (gravity) x (height) .
At the bottom, the car's kinetic energy is
KE = (1/2) (mass) (speed²) .
You said that the car's speed is 70 m/s at the bottom of the hill,
and you also said that 10% of the energy will be lost on the way
down. So now, here comes the big jump. Put a comment under
my answer if you don't see where I got this equation:
KE = 0.9 PE
(1/2) (mass) (70 m/s)² = (0.9) (mass) (gravity) (height)
Divide each side by (mass):
(0.5) (4900 m²/s²) = (0.9) (9.8 m/s²) (height)
(There goes the mass. As long as the whole thing is 90% efficient,
the solution will be the same for any number of cars, loaded with
any number of passengers.)
Divide each side by (0.9):
(0.5/0.9) (4900 m²/s²) = (9.8 m/s²) (height)
Divide each side by (9.8 m/s²):
Height = (5/9)(4900 m²/s²) / (9.8 m/s²)
= (5 x 4900 m²/s²) / (9 x 9.8 m/s²)
= (24,500 / 88.2) (m²/s²) / (m/s²)
= 277-7/9 meters
(about 911 feet)
Angular velocity of the rotating tires can be calculated using the formula,
v=ω×r
Here, v is the velocity of the tires = 32 m/s
r is the radius of the tires= 0.42 m
ω is the angular velocity
Substituting the values we get,
32=ω×0.42
ω= 32/0.42 = 76.19 rad/s
= 76.19×
revolution per min
=728 rpm
Angular velocity of the rotating tires is 76.19 rad/s or 728 rpm.