Answer: The question has some missing details. The initial velocity given as u = -6.5i + 17j + 13k and the final velocity v = -2.8i + 17j -9.3k.
a) = (1.82i - 9.69k)m/s2
b) magnitude = 9.85m/s2
c) direction = 280.64 degree
Explanation:
The detailed and step is shown in the attachment.
In Physics, 'work' has a very clear definition:
It's (strength of a force) times (distance through which the force acts).
'Work' has the units of Energy.
If you push against a shopping cart with 30 newtons of force, and
you keep pushing while the cart moves 4 meters, then you have
done (30 x 4) = 120 newton-meters of work = 120 "Joules".
Answer:
The final image relative to the converging lens is 34 cm.
Explanation:
Given that,
Focal length of diverging lens = -12.0 cm
Focal length of converging lens = 34.0 cm
Height of object = 2.0 cm
Distance of object = 12 cm
Because object at focal point
We need to calculate the image distance of diverging lens
Using formula of lens



The rays are parallel to the principle axis after passing from the diverging lens.
We need to calculate the image distance of converging lens
Now, object distance is ∞
Using formula of lens


The image distance is 34 cm right to the converging lens.
Hence, The final image relative to the converging lens is 34 cm.
Answer: seen below.
Explanation:
Firstly we need to remember what exothermic reaction is in thermodynamics. exothermic reaction describes a process or reaction that releases energy from the system to its surroundings, usually in the form of heat, but also in a form of light, sound, or electricity.
In this scenario, due to the heating up nature noticed by the ring during breaking shows that energy is being released to the surrounding in the form of heat which suggest it being an exothermic reaction.