By applying the knowledge of similar triangles, the lengths of AE and AB are:
a. 
b. 
<em>See the image in the attachment for the referred diagram.</em>
<em />
- The two triangles, triangle AEC and triangle BDC are similar triangles.
- Therefore, the ratio of the corresponding sides of triangles AEC and BDC will be the same.
<em>This implies that</em>:
<em><u>Given:</u></em>

<u>a. </u><u>Find the length of </u><u>AE</u><u>:</u>
EC/DC = AE/DB



<u>b. </u><u>Find the length of </u><u>AB:</u>

AC = 6.15 cm
To find BC, use AC/BC = EC/DC.




Therefore, by applying the knowledge of similar triangles, the lengths of AE and AB are:
a. 
b. 
Learn more here:
brainly.com/question/14327552
5(x^2 - 14x + 258/5)
= 5((x-7)^2 -49+258/5)
= 5((x-7)^2 + 13/5)
= 5(x-7)^2 + 13
I belive this is how it should be done
Answer:
the correct answer is 302cm²
<h3>Answer:</h3><h3>Exact volume =
32pi</h3><h3>Approximate volume =
100.48</h3>
The approximate volume only applies when pi = 3.14
Use either answer, but not both of course.
===============================================
Work Shown:
V = volume of cylinder
V = pi*r^2*h
V = pi*2^2*8
V = pi*32
V = 32pi .... exact volume in terms of pi
V = 32*3.14
V = 100.48 .... approximate volume when we use pi = 3.14
Answer: D
Dependent variable is Distance.