Answer:
0.26×10²³ molecules
Explanation:
Given data:
Volume of gas = 1.264 L
Temperature = 168°C
Pressure = 946.6 torr
Number of molecules of gas = ?
Solution:
Temperature = 168°C (168+273= 441 K)
Pressure = 946.6 torr (946.6/760 = 1.25 atm)
Now we will determine the number of moles.
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
n = PV/RT
n = 1.25 atm ×1.264 L / 0.0821 atm.L/ mol.K ×441 K
n = 1.58 /36.21 /mol
n = 0.044 mol
Now we will calculate the number of molecules by using Avogadro number.
1 mol = 6.022×10²³ molecules
0.044 mol × 6.022×10²³ molecules/ 1mol
0.26×10²³ molecules
Answer:
Pb2+(aq) + 2Cl–(aq) ----> PbCl2(s)
Explanation:
The net ionic equation shows the main reaction that takes place in a system. Hence, a net ionic equation focusses only on those species that actually participate in the reaction.
For the reaction between Pb(NO3)2 and NH4Cl , the net ionic equation is;
Pb^+(aq) + 2Cl^-(aq) ---> PbCl2(s)
Answer: -
The rate decreases as the concentration of the reactants decreases
Explanation: -
A reaction involves change of the reactants into products.
Initially there is only reactants. So the rate if reaction is high.
After some time there are products. So the amount of reactant is less.
Reactions involve collisions of reactant molecules. As the reactant amount decreases, collisions between the reactants decreases. As such the rate of reaction decreases with the progress of the reaction.