Answer:
Molecular solids and covalent network solids are two types of solid compounds. The key difference between molecular solid and covalent network solid is that <em>molecular solid forms due to the action of Van der Waal forces </em>where as <em>covalent network solid forms due to the action of covalent chemical bonds.</em>
hope this helps
Increase in temperature makes the atoms speed up, and decrease in temperature makes the atoms move slower.
The ideal gas law:

p - pressure, n - number of moles, R - the gas constant, T - temperature, V - volume
The volume and temperature of all three containers are the same, so the pressure depends on the number of moles. The greater the number of moles, the higher the pressure.
The mass of gases is 50 g.

The greatest number of moles is in the container with Ar, so there is the highest pressure.