Answer:
yes the ones u chose are correct.
Explanation:
Answer: 27.09 ppm and 0.003 %.
First, <u>for air pollutants, ppm refers to parts of steam or gas per million parts of contaminated air, which can be expressed as cm³ / m³. </u>Therefore, we must find the volume of CO that represents 35 mg of this gas at a temperature of -30 ° C and a pressure of 0.92 atm.
Note: we consider 35 mg since this is the acceptable hourly average concentration of CO per cubic meter m³ of contaminated air established in the "National Ambient Air Quality Objectives". The volume of these 35 mg of gas will change according to the atmospheric conditions in which they are.
So, according to the <em>law of ideal gases,</em>
PV = nRT
where P, V, n and T are the pressure, volume, moles and temperature of the gas in question while R is the constant gas (0.082057 atm L / mol K)
The moles of CO will be,
n = 35 mg x
x
→ n = 0.00125 mol
We clear V from the equation and substitute P = 0.92 atm and
T = -30 ° C + 273.15 K = 243.15 K
V = 
→ V = 0.0271 L
As 1000 cm³ = 1 L then,
V = 0.0271 L x
= 27.09 cm³
<u>Then the acceptable concentration </u><u>c</u><u> of CO in ppm is,</u>
c = 27 cm³ / m³ = 27 ppm
<u>To express this concentration in percent by volume </u>we must consider that 1 000 000 cm³ = 1 m³ to convert 27.09 cm³ in m³ and multiply the result by 100%:
c = 27.09
x
x 100%
c = 0.003 %
So, <u>the acceptable concentration of CO if the temperature is -30 °C and pressure is 0.92 atm in ppm and as a percent by volume is </u>27.09 ppm and 0.003 %.
Here, we are required to determine the volume of the earth which is 1.08326 × 10¹² km³ in liters.
<em>The volume of the earth is approximately</em>,
, 1.08326 × 10²⁴ liters
By conversion factors;
- <em>1dm³ = 1liter</em>
- However; <em>1km = 10000dm = 10⁴ </em><em>dm</em>
- Therefore, 1km³ = (10⁴)³ dm³.
Consequently, 1km³ = 10¹²dm³ = 10¹²liters.
The conversion factor from 1km³ to liters is therefore, c.f = 10¹²liters/km³
Therefore, the volume of the earth which is approximately, 1.08326 × 10¹² km³ can be expressed in liters as;
<em>1.08326 × 10¹² km³ × 10¹²liters/km³ </em>
The volume of the earth is approximately,
1.08326 × 10²⁴ liters.
Read more:
brainly.com/question/16814684
Besides producing hydrogen ions in water, all Arrhenius acids have a few things in common. They have pH values anywhere from 0 up to 7, they taste and smell sour and they will turn pH paper pink, red, or orange.
<h3>What Arrhenius acids?</h3>
A substance that raises the concentration of H+ ions in an aqueous solution is known as an Arrhenius acid. Traditional Arrhenius acids are highly polarized covalent substances that dissociate in water to form an anion (A-) and the cation H+.
Aqueous Arrhenius acids have distinguishing characteristics that serve as a useful definition of an acid. Acids can turn blue litmus red, produce aqueous solutions with a sour taste, and react with bases and some metals (like calcium) to generate salts. The Latin word acidus/acre, which means "sour," is where the word acid originates.
Although the precise definition solely refers to the solute, the term "acid" is sometimes used to refer to an aqueous solution of an acid that has a pH lower than 8.
To learn more about Arrhenius acids from the given link:
brainly.com/question/22095536
#SPJ4
They exist in the outer orbitals