Answer:
x = 4√7
Step-by-step explanation:
You can use the pythagorean theorem which is a² + b² = c²
if you plug it in, it would be...
x² + 12² = 16²
x² + 144 = 256, subtract 144 to both sides
x² = 112, square root both sides to make x by itself.
x = 4√7
Answer:
The triangle has three acute angles, so it is an acute triangle. The triangle has two congruent sides, so, it is an isosceles triangle. It is an acute isosceles triangle.
Step-by-step explanation:
Answer:
The choice that best describes the given sentence above is, it is a complete and correct sentence. What makes this sentence complete is having both the subject and the verb in a simple form, and still expresses a complete thought. The verb and simple predicate "volunteered" is enough to describe the subject "Cassidy".
14 and the remainder is 3
Answers:
_____________________________________________________
Part A) " (3x + 4) " units .
_____________________________________________________
Part B) "The dimensions of the rectangle are:
" (4x + 5y) " units ; <u>AND</u>: " (4x − 5y)" units."
_____________________________________________________
Explanation for Part A):
_____________________________________________________
Since each side length of a square is the same;
Area = Length * width = L * w ; L = w = s = s ;
in which: " s = side length" ;
So, the Area of a square, "A" = L * w = s * s = s² ;
{<u>Note</u>: A "square" is a rectangle with 4 (four) equal sides.}.
→ Each side length, "s", of a square is equal.
Given: s² = "(9x² + 24x + 16)" square units ;
Find "s" by factoring: "(9x² + 24x + 16)" completely:
→ " 9x² + 24x + 16 ";
Factor by "breaking into groups" :
"(9x² + 24x + 16)" =
→ "(9x² + 12x) (12x + 16)" ;
_______________________________________________________
Given: " (9x² + 24x + 16) " ;
_______________________________________________________
Let us start with the term:
_______________________________________________________
" (9x² + 12x) " ;
→ Factor out a "3x" ; → as follows:
_______________________________________
→ " 3x (3x + 4) " ;
Then, take the term:
_______________________________________
→ " (12x + 16) " ;
And factor out a "4" ; → as follows:
_______________________________________
→ " 4 (3x + 4) "
_______________________________________
We have:
" 9x² + 24x + 16 " ;
= " 3x (3x + 4) + 4(3x + 4) " ;
_______________________________________
Now, notice the term: "(3x + 4)" ;
We can "factor out" this term:
3x (3x + 4) + 4(3x + 4) =
→ " (3x + 4) (3x + 4) " . → which is the fully factored form of:
" 9x² + 24x + 16 " ;
____________________________________________________
→ Or; write: " (3x + 4) (3x + 4)" ; as: " (3x + 4)² " .
____________________________________________________
→ So, "s² = 9x² + 24x + 16 " ;
Rewrite as: " s² = (3x + 4)² " .
→ Solve for the "positive value of "s" ;
→ {since the "side length of a square" cannot be a "negative" value.}.
____________________________________________________
→ Take the "positive square root of EACH SIDE of the equation;
to isolate "s" on one side of the equation; & to solve for "s" ;
→ ⁺√(s²) = ⁺√[(3x + 4)²] '
To get:
→ s = " (3x + 4)" units .
_______________________________________________________
Part A): The answer is: "(3x + 4)" units.
____________________________________________________
Explanation for Part B):
_________________________________________________________<span>
The area, "A" of a rectangle is:
A = L * w ;
in which "A" is the "area" of the rectangle;
"L" is the "length" of the rectangle;
"w" is the "width" of the rectangle;
_______________________________________________________
Given: " A = </span>(16x² − 25y²) square units" ;
→ We are asked to find the dimensions, "L" & "w" ;
→ by factoring the given "area" expression completely:
____________________________________________________
→ Factor: " (16x² − 25y²) square units " completely '
Note that: "16" and: "25" are both "perfect squares" ;
We can rewrite: " (16x² − 25y²) " ; as:
= " (4²x²) − (5²y²) " ; and further rewrite the expression:
________________________________________________________
Note:
________________________________________________________
" (16x²) " ; can be written as: "(4x)² " ;
↔ " (4x)² = "(4²)(x²)" = 16x² "
Note: The following property of exponents:
→ (xy)ⁿ = xⁿ yⁿ ; → As such: " 16x² = (4²x²) = (4x)² " .
_______________________________________________________
Note:
_______________________________________________________
→ " (25x²) " ; can be written as: " (5x)² " ;
↔ "( 5x)² = "(5²)(x²)" = 25x² " ;
Note: The following property of exponents:
→ (xy)ⁿ = xⁿ yⁿ ; → As such: " 25x² = (5²x²) = (5x)² " .
______________________________________________________
→ So, we can rewrite: " (16x² − 25y²) " ;
as: " (4x)² − (5y)² " ;
→ {Note: We substitute: "(4x)² " for "(16x²)" ; & "(5y)² " for "(25y²)" .} . ;
_______________________________________________________
→ We have: " (4x)² − (5y)² " ;
→ Note that we are asked to "factor completely" ;
→ Note that: " x² − y² = (x + y) (x − y) " ;
→ {This property is known as the "<u>difference of squares</u>".}.
→ As such: " (4x)² − (5y)² " = " (4x + 5y) (4x − 5y) " .
_______________________________________________________
Part B): The answer is: "The dimensions of the rectangle are:
" (4x + 5y) " units ; AND: " (4x − 5y)" units."
_______________________________________________________