1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jok3333 [9.3K]
3 years ago
8

Question 5(Multiple Choice Worth 3 points) (06.04) Evaluate the expression 7x2y, when x = 5 and y = 3. 210 315 525 728

Mathematics
2 answers:
Natali [406]3 years ago
7 0
Plug in values. 
7x2y = 
7(5)2(3) = 
210 <---------------------Answer
Anastaziya [24]3 years ago
7 0
I typed in 210 it was wrong I think it was 315.
You might be interested in
Solve for x. Leave your answer in simplest radical form.
pochemuha

Answer:

x = 4√7

Step-by-step explanation:

You can use the pythagorean theorem which is a² + b² = c²

if you plug it in, it would be...

x² + 12² = 16²

x² + 144 = 256, subtract 144 to both sides

x² = 112, square root both sides to make x by itself.

x = 4√7  

6 0
3 years ago
A triangle with three acute angles and two congruent sides. Classify the triangle
Rus_ich [418]

Answer:

The triangle has three acute angles, so it is an acute triangle. The triangle has two congruent sides, so, it is an isosceles triangle. It is an acute isosceles triangle.

Step-by-step explanation:

6 0
2 years ago
Which choice best describes the following sentence?
Wittaler [7]

Answer:

The choice that best describes the given sentence above is, it is a complete and correct sentence. What makes this sentence complete is having both the subject and the verb in a simple form, and still expresses a complete thought. The verb and simple predicate "volunteered" is enough to describe the subject "Cassidy".

6 0
3 years ago
IN MATH WHAT IS 86 DIVIDE BY 6 WHAT THE REMAINDER
Valentin [98]
14 and the remainder is 3
5 0
3 years ago
Read 2 more answers
BRAINLIESSTTTT ASAP !!!!!!!!!! 20 pointssss
Mars2501 [29]
Answers:  
_____________________________________________________
   Part A)  " (3x + 4) " units  . 
_____________________________________________________
   Part B)  "The dimensions of the rectangle are:

                             " (4x + 5y) " units ;  <u>AND</u>:  " (4x − 5y)"  units."
_____________________________________________________

Explanation for  Part A):
_____________________________________________________

Since each side length of a square is the same; 
   
    Area = Length * width = L * w ;  L = w  = s = s ;

      in which:  " s = side length" ;

So, the Area of a square, "A"  = L * w = s * s = s² ;

{<u>Note</u>:  A "square" is a rectangle with 4 (four) equal sides.}.

→  Each side length, "s", of a square is equal.

Given:  s² = "(9x² + 24x + 16)" square units ;

Find "s" by factoring: "(9x² + 24x + 16)" completely:

   →  " 9x² + 24x + 16 ";

Factor by "breaking into groups" :

"(9x² + 24x + 16)"  = 

    →  "(9x² + 12x) (12x + 16)" ;
_______________________________________________________

Given:   " (9x² + 24x + 16) " ; 
_______________________________________________________
Let us start with the term:
_______________________________________________________

" (9x² + 12x) " ; 

    →  Factor out a "3x" ;  → as follows:
_______________________________________

    → " 3x (3x + 4) " ; 

Then, take the term:
_______________________________________
    → " (12x + 16) " ;

And factor out a "4" ;   →  as follows:
_______________________________________

    → " 4 (3x + 4) " 
_______________________________________
We have:

" 9x² + 24x + 16 " ;

    =  " 3x (3x + 4)  +  4(3x + 4) " ;
_______________________________________
Now, notice the term:  "(3x + 4)" ; 

We can "factor out" this term:

3x (3x + 4)  +  4(3x + 4)  = 

     →  " (3x + 4) (3x + 4) " .  → which is the fully factored form of:

                                                   " 9x² + 24x + 16 "  ; 
____________________________________________________
     →  Or; write:  "  (3x + 4) (3x + 4)" ; as:  " (3x + 4)² " .
____________________________________________________
     →  So,  "s² = 9x² + 24x + 16 " ; 

Rewrite as:  " s² = (3x + 4)² " .

     →  Solve for the "positive value of "s" ; 

     →  {since the "side length of a square" cannot be a "negative" value.}.
____________________________________________________
     →  Take the "positive square root of EACH SIDE of the equation; 
              to isolate "s" on one side of the equation; & to solve for "s" ;

     →  ⁺√(s²)  =  ⁺√[(3x + 4)²]   '

To get:

     →  s  = " (3x + 4)" units .
_______________________________________________________

Part A):  The answer is:  "(3x + 4)" units.
____________________________________________________

Explanation for Part B):

_________________________________________________________<span>

The area, "A" of a rectangle is:

    A = L * w ;  

 in which "A" is the "area" of the rectangle;
                "L" is the "length" of the rectangle; 
                "w" is the "width" of the rectangle; 
_______________________________________________________
  Given:  " A = </span>(16x² − 25y²) square units" ;  
   
       →  We are asked to find the dimensions, "L" & "w" ;
       →  by factoring the given "area" expression completely:
____________________________________________________
  → Factor:  " (16x² − 25y²) square units " completely '

Note that:  "16" and: "25" are both "perfect squares" ;
      
We can rewrite: " (16x² − 25y²) "  ;   as:

       =   " (4²x²)  −  (5²y²) " ; and further rewrite the expression:
________________________________________________________
Note:  
________________________________________________________
" (16x²) " ;  can be written as:  "(4x)² " ;

 ↔ " (4x)²  =  "(4²)(x²)" = 16x² "


Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 16x² = (4²x²) = (4x)² " . 
_______________________________________________________
Note:
_______________________________________________________

     →   " (25x²) " ;  can be written as:  " (5x)² " ; 

        ↔   "( 5x)²  =  "(5²)(x²)" = 25x² " ; 

Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 25x² = (5²x²) = (5x)² " . 
______________________________________________________

→  So, we can rewrite:  " (16x² − 25y²) " ;  

as:  " (4x)² − (5y)² " ;   
 
    → {Note:  We substitute: "(4x)² "  for "(16x²)" ; & "(5y)² "  for "(25y²)" .} . ; 
_______________________________________________________
→  We have:  " (4x)² − (5y)² " ;

→  Note that we are asked to "factor completely" ; 

→  Note that:  " x² − y² = (x + y) (x − y) " ;

      → {This property is known as the "<u>difference of squares</u>".}.

→ As such:  " (4x)² − (5y)² " = " (4x + 5y) (4x − 5y) " .
_______________________________________________________
Part B):  The answer is:  "The dimensions of the rectangle are:

                              " (4x + 5y) " units ;  AND:  " (4x − 5y)"  units."
_______________________________________________________
7 0
3 years ago
Other questions:
  • 4(0.5f−0.25)=6+f what is f<br><br><br> I am so lost when we were doing this in class
    7·2 answers
  • S=(n-2) * 180. Solve for n.
    7·2 answers
  • What are the answers
    10·1 answer
  • The lowest FICO credit score is
    15·2 answers
  • Help me plz this is my last question of the day but plz help me
    11·1 answer
  • HELP<br><br> y = (3x)2 + 17 <br> when x = 2 function and solution
    7·1 answer
  • The state of California takes about 8% of your income for income tax. How much of your money do you owe California in taxes each
    10·1 answer
  • Is (1, 6) a solution to this system of equations?
    14·1 answer
  • What is the area of this triangle? 0 480 m2 525 m2 675 m2 900 m2​
    12·2 answers
  • Please help 50 points please help hast to be right
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!