The Hooke's law is a principal of physics that states that the force needed to extend or compress a spring by some distance x scales linearly with respect to that distance.
Answer:
Party, Birthday, Weddings, Nightclub, Just for fun
Well it is definitely answer B because when light is on for a long time it heats up a lot.the thermometer obviously went up which means the light bulb had more energy and was hotter than the start of it
Answer:
Approximately 1.62 × 10⁻⁴ V.
Explanation:
The average EMF in the coil is equal to
,
Why does this formula work?
By Faraday's Law of Induction, the EMF
induced in a coil (one loop) is equal to the rate of change in the magnetic flux
through the coil.
.
Finding the average EMF in the coil is similar to finding the average velocity.
.
However, by the Fundamental Theorem of Calculus, integration reverts the action of differentiation. That is:
.
Hence the equation
.
Note that information about the constant term in the original function will be lost. However, since this integral is a definite one, the constant term in
won't matter.
Apply this formula to this question. Note that
, the magnetic flux through the coil, can be calculated with the equation
.
For this question,
is the strength of the magnetic field.
is the area of the coil.
is the number of loops in the coil.
is the angle between the field lines and the coil. - At
, the field lines are parallel to the coil,
. - At
, the field lines are perpendicular to the coil,
.
Initial flux:
.
Final flux:
.
Average EMF, which is the same as the average rate of change in flux:
.
Answer:
2.4583 ± 0.0207 seconds
Explanation:
The time period of a pendulum is approximately given by the formula ...
T = 2π√(L/g)
The maximum period will be achieved when length is longest and gravity is smallest:
Tmax = 2π√(1.51/9.7) ≈ 2.47903 . . . seconds
The minimum period will be achieved for the opposite conditions: minimum length and maximum gravity:
Tmin = 2π√(1.49/9.9) ≈ 2.43756 . . . seconds
If we want to express the uncertainty using a symmetrical range, we need to find half their sum and half their difference.
T = (2.47903 +2.43756)/2 ± (2.47903 -2.43756)/2
T ≈ 2.4583 ± 0.0207 . . . seconds
__
We have about 2+ significant digits in the given parameters, so the time might be rounded to 2.46±0.02 seconds.