1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nevsk [136]
3 years ago
12

Energy in the form of motion is potential energy. True False

Physics
1 answer:
Veseljchak [2.6K]3 years ago
5 0

False

Energy in the form of motion is kinetic energy

Stored energy is called potential energy

You might be interested in
Two resistors, R1 and R2, are connected
marusya05 [52]

Answer:

18 ohms

Explanation:

V = I(R1 + R2)

5V = (0.167A)(12 ohms + R2)

Solving for R2

R2 = 18 ohms

3 0
3 years ago
To understand how to find the velocities of objects after a collision.
trasher [3.6K]

There are some information missing on Part D: Let the mass of object 1 be m and the mass of object 2 be 3m. If the collision is perfectly inelastic, what are the velocities of the two objects after the collision? Give the velocity v_1 of object one, followed by object v_2 of object two, separated by a comma. Express each velocity in terms of v.

Answer: Part A: v_1 = 0; v_2 = v

Part B: v_1 = v_2 = \frac{v}{2}

Part C: v_1 = \frac{v}{3}; v_2 = \frac{4v}{3}

Part D: v_1 = v_2 = \frac{v}{4}

Explanation: In elastic collisions, there no loss of kinetic energy and momentum is conserved. Momentum is determined as p = m.v and kinetic energy as K = \frac{1}{2}m.v^{2}

Conserved means that the amount of initial momentum is equal to the amount of final momentum:

m_{1}.v_{1i} + m_{2}.v_{2i} = m_{1}.v_{1f} + m_{2}.v_{2f}

No loss of energy means that initial kinietc energy is the same as the final kinetic energy:

\frac{1}{2}(m_{1}.v_{1i} + m_{2}.v_{2i}) = \frac{1}{2} (m_{1}.v_{1f} + m_{2}.v_{2f}  )

To determine the final velocities of each object, there are 2 variables and two equations, so working those equations, the result is:

v_{2f} = \frac{2.m_{1} } {m_{1} + m_{2} }.v_{1i}  + \frac{(m_{2} - m_{1})}{m_{1} + m_{2} } . v_{2i}

v_{1f} = \frac{m_{2} - m_{1} }{m_{1} + m_{2} } . v_{1i} + \frac{2.m_{2} }{m_{1} + m_{2} } .v_{2i}

For all the collisions, object 2 is static, i.e. v_{2i} = 0

<u>Part A</u>: Both objects have the same mass (m), v_{1i} = v and collision is elastic:

v_1 = \frac{m_{2} - m_{1}}{m_{1} + m_{2} } . v_{1i}

v_1 = 0

v_2 = \frac{2.m_{1} }{m_{1} + m_{2}}.v_{1i}

v_2 = \frac{2.m}{m+m}.v

v_2 = v

When the masses are the same and there is an object at rest, the object in movement stops and the object at rest has the same same velocity as the object who hit it.

<u>Part B</u>: Same mass but collision is inelastic: An inelastic collision means that after it happens, the two objects has the same final velocity, then:

m_{1}.v_{1i} + m_{2}.v_{2i} = m_{1}.v_{1f} + m_{2}.v_{2f}

m_{1}.v_{1i} = (m_{1}+m_{2}).v_{f}

v_{f} =  \frac{m_{1}.v_{1i}}{m_{1} + m_{2} }

v_1 = v_2 = \frac{m.v}{m+m}

v_1 = v_2 = \frac{v}{2}

<u>Part C:</u> Object 1 is 2m, object 2 is m and elastic collision:

v_1 = \frac{m_{2} - m_{1}}{m_{1} + m_{2} } . v_{1i}

v_1 = \frac{2m - m}{2m + m } . v

v_1 = \frac{v}{3}

v_2 = \frac{2.m_{1} }{m_{1} + m_{2}}.v_{1i}

v_2 = \frac{2.2m}{2m+m}.v

v_2 = \frac{4v}{3}

<u>Part D</u>: Object 1 is m, object is 3m and collision is inelastic:

v_1 = v_2 = v_{f} =  \frac{m_{1}.v_{1i}}{m_{1} + m_{2} }

v_1 = v_2 = \frac{m}{m+3m}.v

v_1 = v_2 = \frac{v}{4}

5 0
4 years ago
A transformer has a primary coil with 375 turns of wire and a secondary coil with 1,875 turns. An AC voltage source connected ac
Sonbull [250]

Answer:

The rms voltage (in V) measured across the secondary coil is 459.62 V

Explanation:

Given;

number of turns in the primary coil, Np = 375 turns

number of turns in the secondary coil, Ns = 1875 turns

peak voltage across the primary coil, Ep = 130 V

peak voltage across the secondary coil, Es = ?

\frac{N_P}{N_s} = \frac{E_p}{E_s} \\\\E_s = \frac{N_sE_p}{N_p} \\\\E_s = \frac{1875*130}{375} \\\\E_s = 650 \ V

The rms voltage (in V) measured across the secondary coil is calculated as;

V_{rms} = \frac{V_0}{\sqrt{2} } = \frac{E_s}{\sqrt{2} } \\\\V_{rms} = \frac{650}{\sqrt{2} } = 459.62 \ V

Therefore, the rms voltage (in V) measured across the secondary coil is 459.62 V

7 0
3 years ago
4) A drag racer starts her car from rest and accelerates at 10.0 m/s² for a distance of 400 m (1/4 mile). (a) How long did it ta
mel-nik [20]

Answer:

A) s=1/2at^2

t=√(2s/a)=√(2x400)/10.0)=9.0s

B) v=at

v=10.0x9=90m/s

3 0
3 years ago
determine the maximum angle theta for which the light rays incident on the end of the optical fiber of radius 1 mm are subhect t
Vesna [10]

Answer:

Explanation:

Let the critical angle be C .

sinC = 1 / μ where μ is index of refraction .

sinC = 1 /1.2

= .833

C = 56°

Then angle of refraction r = 90 - 56 = 34 ( see the image in attached file )

sin i / sinr = 1.2 , i is angle of incidence

sini = 1.2 x sinr = 1.2 x sin 34 = .67

i = 42°.  

7 0
3 years ago
Other questions:
  • Is the stomach just below the waist?
    14·1 answer
  • In a sinusoidally driven series RLC circuit, the inductive resistance is XL = 100 Ω, the capacitive reactance is XC = 200 Ω, and
    15·1 answer
  • Plz help I need the answers to this ASAP
    9·1 answer
  • What are 3 ways to say velocity is decreasing
    7·1 answer
  • Jennifer and katie stand and lean on each other. Jennifer weighs 150 pounds and katie weighs 120 pounds.
    14·1 answer
  • What is the change in momentum of a 50. kg<br> woman goes from running at 8.0 m/s to 0.0<br> m/s?
    8·1 answer
  • How does the electric field intensity vary with the increase of distance of the point from the centre of a charged conducting sp
    8·1 answer
  • A car of mass M traveling with velocity v strikes a car of mass M that is at rest. The two cars’ bodies mesh in the collision. T
    12·1 answer
  • Question 2 A horizontal line on a position vs time graph means the object is O moving faster. O at rest O slowing down. O moving
    9·1 answer
  • Help me
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!