Expanded: 8.000 + .500 + .010 + .007
Word Form: eight ones, five tenths, one hundredth, seven thousandths
Hope this helps!
Answer:
-9/2
Step-by-step explanation:
-7-3a=17
-1-17=3a
-18=3a
a=-18/3
a=-6
The value of fac{3}{4} a = (3/4)(-6)
= -18/4
= -9/2
Answer:
x = 1, y = 6
or
x = 5, y = 2.
Step-by-step explanation:
y=x2−7x+12
y=−x+7
Substitute for y in the first equation:
- x + 7 = x^2 - 7x + 12
x^2 - 7x + x + 12 - 7 = 0
x^2 - 6x + 5 = 0
(x - 1)(x - 5) = 0
x = 1, 5.
When x = 1, y = -1 + 7 = 6.
when x = 5, y = -5+7 = 2.
Answer:
a) = 4.5
b) = 3.3
Step-by-step explanation:
Before solving our problems given to us let us under stand the rule of cube roots
It says
-----(A)
Also
---(B)
Now let us see each part one by one
a) we have
![\sqrt[3]{64} + \sqrt[3]{0.027} + \sqrt[3]{0.008}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B64%7D%20%2B%20%5Csqrt%5B3%5D%7B0.027%7D%20%2B%20%5Csqrt%5B3%5D%7B0.008%7D)
Now 64 = 4 x 4 x 4
0.027 = 0.3 x 0.3 x 0.3
0.008 = 0.2 x 0.2 x 0.2
substituting these values
![\sqrt[3]{4 \times 4 \times 4} + \sqrt[3]{0.3 \times 0.3 \times 0.3} + \sqrt[3]{0.2 \times 0.2 \times 0.2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B4%20%5Ctimes%204%20%5Ctimes%204%7D%20%2B%20%5Csqrt%5B3%5D%7B0.3%20%5Ctimes%200.3%20%5Ctimes%200.3%7D%20%2B%20%5Csqrt%5B3%5D%7B0.2%20%5Ctimes%200.2%20%5Ctimes%200.2%7D)
Applying Rule A in above


4.5
b) we have ![\sqrt[3]{0.3 \times 0.3 \times 0.3 \times 11 \times 11 \times 11}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B0.3%20%5Ctimes%200.3%20%5Ctimes%200.3%20%5Ctimes%2011%20%5Ctimes%2011%20%5Ctimes%2011%7D)
Applying the B rule in this

3.3
Answer:
Integral will be diverging in nature
Step-by-step explanation:
We have given integral 
Now after solving the integral
limit from 5 to infinite
So ![[\frac{3}{2}\frac{\infty^3}{3}]-[\frac{3}{2}\times \frac{5^3}{3}]=\infty](https://tex.z-dn.net/?f=%5B%5Cfrac%7B3%7D%7B2%7D%5Cfrac%7B%5Cinfty%5E3%7D%7B3%7D%5D-%5B%5Cfrac%7B3%7D%7B2%7D%5Ctimes%20%5Cfrac%7B5%5E3%7D%7B3%7D%5D%3D%5Cinfty)
As after solving integral we got infinite value so integral will be diverging in nature