Answer:
D) 
Step-by-step explanation:
A)

B)

C)

D)

Let's assume that a month has four weeks.
If William made 400 miles by travelling only on Saturdays and Sundays and there were 4 weekends during the month, then he travels 400 / 4 = 100 miles during a weekend, which is 100 / 2 = 50 miles a day.
If Jason travels every weekday during the month and he does 500 miles, then he travels 500 / 20 = 25 miles a day.
It means that William travels more miles per day.
Answer:
<em>There are approximately 114 rabbits in the year 10</em>
Step-by-step explanation:
<u>Exponential Growth
</u>
The natural growth of some magnitudes can be modeled by the equation:

Where P is the actual amount of the magnitude, Po is its initial amount, r is the growth rate and t is the time.
We are given two measurements of the population of rabbits on an island.
In year 1, there are 50 rabbits. This is the point (1,50)
In year 5, there are 72 rabbits. This is the point (5,72)
Substituting in the general model, we have:

![50=P_o(1+r)\qquad\qquad[1]](https://tex.z-dn.net/?f=50%3DP_o%281%2Br%29%5Cqquad%5Cqquad%5B1%5D)
![72=P_o(1+r)^5\qquad\qquad[2]](https://tex.z-dn.net/?f=72%3DP_o%281%2Br%29%5E5%5Cqquad%5Cqquad%5B2%5D)
Dividing [2] by [1]:

Solving for r:
![\displaystyle r=\sqrt[4]{\frac{72}{50}}-1](https://tex.z-dn.net/?f=%5Cdisplaystyle%20r%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B72%7D%7B50%7D%7D-1)
Calculating:
r=0.095445
From [1], solve for Po:



The model can be written now as:

In year t=10, the population of rabbits is:

P = 113.6

There are approximately 114 rabbits in the year 10
Answer:77
Step-by-step explanation:
Least Common Multiple of 7 and 11 with GCF Formula
The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 7 and 11, than apply into the LCM equation.
GCF(7,11) = 1
LCM(7,11) = ( 7 × 11) / 1
LCM(7,11) = 77 / 1
LCM(7,11) = 77
Least Common Multiple (LCM) of 7 and 11 with Primes
Least common multiple can be found by multiplying the highest exponent prime factors of 7 and 11. First we will calculate the prime factors of 7 and 11.
Prime Factorization of 7
Prime factors of 7 are 7. Prime factorization of 7 in exponential form is:
7 = 71
Prime Factorization of 11
Prime factors of 11 are 11. Prime factorization of 11 in exponential form is:
11 = 111
Now multiplying the highest exponent prime factors to calculate the LCM of 7 and 11.
LCM(7,11) = 71 × 111
LCM(7,11) = 77
Answer:
c ≈ 70.7
Step-by-step explanation:
Solve using the Pythagorean theorem:
-Chetan K