Answer:
B:The actual power dissipated by the resistor is less than P because the ammeter had some resistance.
Explanation:
Here,power has been calculated using current I and total EMF \ε . So,P=EMF*current= ε I will represent total power dissipated in resistor and ammeter.
Now, this total power P has been dissipated in both resistor and ammeter. So, power dissipated in resistor must be less than P as some power is also dissipated in ammeter because it has non-zero resistance.
So, the answer is B:The actual power dissipated by the resistor is less than P because the ammeter had some resistance.
Note that option A,C and E are ruled out as they state power dissipated by resistor is greater than or equal to P which is false.
Also,option D is ruled out as ammeter is connected in series.
4.333333 kilometers an hour
Answer: Have A Blessed Day!
Explanation:
Thanks for the information mate!
(Also can I have brainliest i'm so close to next rank! Thanks and have a good life!)
A = horizontal displacement of the humming bird = 1.2 m
B = vertical displacement of the humming bird = 1.4 m
C = net displacement of the humming bird from initial to final position = ?
In the triangle drawn , Using Pythagorean theorem
C = √(A² + B²)
inserting the values
C = √(1.2² + 1.4²)
C = √(1.44 + 1.96)
C = √(3.4)
C = 1.4 m
Hence the net displacement of hummingbird comes out to be 1.4 m
Answer:
v=53.3m/s
Explanation:
Ek=1/2mv²
7.81×10⁴=1/2×55.0v²
v= the square root of 7.81×10⁴/0.5×55.0
v=53.3m/s