Answer: 
Explanation:
This problem is related to parabolic motion and can be solved by the following equations:
(1)
(2)
(3)
Where:
is the horizontal distance traveled by the golf ball
is the golf ball's initial velocity
is the angle (it was a horizontal shot)
is the time
is the final height of the ball
is the initial height of the ball
is the acceleration due gravity
is the final velocity of the ball
Let's begin by finding
from (2):
(4)
(5)
(6)
Substituting (6) in (1):
(7)
Finding
:
(8)
Substituting
in (3):
(9)
Finally:

This looks like the photo electric effect ... classical physics reckoned that if you shone an intense enough light beam on a metal you could get electrons ejected from the metal (maybe in analogy to thermionic emission - heat). It sort of "forgot" about the frequency and photon/particle nature of light.
Enter the "photo electric" effect experiment, Einstein's explanation, and the Nobel committee having an excuse to award E a Nobel prize, even though said prize was probably more for relativity.
There is no adjustment in gravity, yet there is an adjustment in 'weightness'.
Gravitational compel and weight with respect to an edge are not similar things, despite the fact that it is normally educated something else.
Weight is really the aggregate of gravitational powers and of inertial drive for a question very still (no Coriolis compel) in a given casing.
In the event that the Earth were not pivoting, weight would increment most at the Equator and be unaltered at the Poles.
The angular momentum of earth is
7×10^33 kgm^2/sec
Given:
mass of earth = 5.98×1024 kg
radius of earth = 6.38×10^6 m
To Find:
angular momentum
Solution:
For earth we have moment of inertia as
I = 2/5mR^2
and angular velocity as ω = 2π/T
Thus angular momentum is given as
L= 2/5mR^2*2π/T
L = 2/5*5.98×10^24*(6.38×10^6)^2*2*3.14/86400s
L = 7 × 10^33 kg/m^2/sec
So, angular momentum of earth is
So, angular momentum of earth is 7×10^33 kgm^2/sec
Learn more about Angular momentum here:
brainly.com/question/13165035
#SPJ4
Electrons orbit around the nucleus.