Answer : The correct option is (D).
Explanation :
Given that,
A track begins at 0 meters and has a total distance of 100 meters. Juliet starts at the 10-meter mark while practicing for a race.
We have to find her position after she runs 45 meters.
From the attached figure,
Let A is the position of Juliet. O is the initial point such that OA = 10 m, AB = 45 m and OP = 100 m.
So, using simple mathematics, it is clear that the position of Juliet after running 45 meters will be 55 m. It is OB in the figure.
So, the correct option is (D) " 55 meters ".
Answer:
you may get bullied or teased for being a differrent race, ethnic.









☯ <u>Using 1st equation of motion </u>











☯ <u>Now, Finding the force exerted </u>







☯ <u>Hence</u>, 

Answer:
<h3>The answer is 8.91 m/s²</h3>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>8.91 m/s²</h3>
Hope this helps you
Answer:
F₃ = 122.88 N
θ₃ = 20.63°
Explanation:
First we find the components of F₁:
For x-component:
F₁ₓ = F₁ Cos θ₁
F₁ₓ = (50 N) Cos 60°
F₁ₓ = 25 N
For y-component:
F₁y = F₁ Sin θ₁
F₁y = (50 N) Sin 60°
F₁y = 43.3 N
Now, for F₂. As, F₂ acts along x-axis. Therefore, its y-component will be zero and its x-xomponent will be equal to the magnitude of force itself:
F₂ₓ = F₂ = 90 N
F₂y = 0 N
Now, for the resultant force on ball to be zero, the sum of x-components of the forces and the sum of the y-component of the forces must also be equal to zero:
F₁ₓ + F₂ₓ + F₃ₓ = 0 N
25 N + 90 N + F₃ₓ = 0 N
F₃ₓ = - 115 N
for y-components:
F₁y + F₂y + F₃y = 0 N
43.3 N + 0 N + F₃y = 0 N
F₃y = - 43.3 N
Now, the magnitude of F₃ can be found as:
F₃ = √F₃ₓ² + F₃y²
F₃ = √[(- 115 N)² + (- 43.3 N)²]
<u>F₃ = 122.88 N</u>
and the direction is given as:
θ₃ = tan⁻¹(F₃y/F₃ₓ) = tan⁻¹(-43.3 N/-115 N)
<u>θ₃ = 20.63°</u>