Comets are like "dirty snowballs"; frozen gasses with dust and rocks in them. Each pass near the Sun causes the comet's nucleus to be exposed to intense sunlight, which causes some tiny fraction of the gas to evaporate and carry some of the dust and rock away into space. The gas and dust, near the Sun, cause the comet's "tail", and repeated passes cause dust and rock to spread out along most of the orbit of a comet. When the Earth enters one of these trails of old comet dust, we have meteor showers.
<span>On rare occasions, comets break apart or even more rarely, crash into planets. In 1994, the comet Shoemaker-Levy 9 broke apart and then collided with the planet Jupiter.</span>
Answer:

Explanation:
Given that,
Capacitance 1, 
Capacitance 2, 
Capacitance 3, 
C₁ and C₂ are connected in series. Their equivalent is given by :



Now C' and C₃ are connected in parallel. So, the final equivalent capacitance is given by :



So, the equivalent capacitance of the combination is 1.97 micro farad. Hence, this is the required solution.
Answer:
a. 37.7 kgm/s b. 0.94 m/s c. -528.85 J
Explanation:
a. The initial momentum of block 1 of m₁ = 1.30 kg with speed v₁ = 29.0 m/s is p₁ = m₁v₁ = 1.30 kg × 29.0 m/s = 37.7 kgm/s
The initial momentum of block 2 of m₁ = 39.0 kg with speed v₂ = 0 m/s since it is initially at rest is p₁ = m₁v₁ = 39.0 kg × 0 m/s = 0 kgm/s
So, the magnitude of the total initial momentum of the two-block system = (37.7 + 0) kgm/s = 37.7 kgm/s
b. Since the blocks stick together after the collision, their final momentum is p₂ = (m₁ + m₂)v where v is the final speed of the two-block system.
p₂ = (1.3 + 39.0)v = 40.3v
From the principle of conservation of momentum,
p₁ = p₂
37.7 kgm/s = 40.3v
v = 37.7/40.3 = 0.94 m/s
So the final velocity of the two-block system is 0.94 m/s
c. The change in kinetic energy of the two-block system is ΔK = K₂ - K₁ where K₂ = final kinetic energy of the two-block system = 1/2(m₁ + m₂)v² and K₁ = final kinetic energy of the two-block system = 1/2m₁v₁²
So, ΔK = K₂ - K₁ = 1/2(m₁ + m₂)v² - 1/2m₁v₁² = 1/2(1.3 + 39.0) × 0.94² - 1/2 × 1.3 × 29.0² = 17.805 J - 546.65 J = -528.845 J ≅ -528.85 J
Oh gosh oh I see it in my life face and
' +4 m/s² ' means that the pigeon's speed is 4 m/s greater every second.
Starting from zero speed, after 10 seconds, its speed is
(10 x 4m/s) = 40 m/s.
We can't say anything about its velocity, because we have
no information regarding the direction of its flight.