Answer:
To find the scale factor of the enlargement, compare the distance between a pair of corresponding points from both shapes.
<u>Shape K</u>
A = (4, 7)
B = (7, 7)
C = (7, 4)
D = (5, 5)
Horizontal distance between A (4, 7) and B (7, 7) = 3 units
<u>Shape L</u>
A' = (0, 11)
B' = (9, 11)
C' = (9, 2)
D' = (3, 5)
Horizontal distance between A' (0, 11) and B' (9, 11) = 9 units
9 ÷ 3 = 3
Therefore, Shape L is an enlargement of Shape K by scale factor 3.
To find the center of dilation (enlargement), draw two lines through 2 corresponding points (e.g. A and A', B and B') - the point of intersection of these lines is the center of dilation.
Therefore, the center of enlargement is (6, 5) (refer to the second attached image).
Answer:
Area of triangle = 1/2*b*h

Answer:
3
Step-by-step explanation:

Answer:
Step-by-step explanation:
Use SOH CAH TOA to recall how the trig functions fit on a triangle
SOH: Sin(Ф)= Opp / Hyp
CAH: Cos(Ф)= Adj / Hyp
TOA: Tan(Ф) = Opp / Adj
7)
now decide which parts we know and what we want to slove for and pick the function that has those in it
we also know that small angle down at the point b/c we can use that the inside of trianle angles add to 180
180 = 75 + 90 + X
15° = X
where x is the angle at that sharp point on the triangle
I want to use that 15° angle in one of the above formulas as it's Opposite of that side we want to know, and also adjcent to that side we know , so i'll pick TOA since it's got all of those in it. Opp = x for this triangle
Tan(15) = Opp / 15
15* Tan(15) = Opp
4.0192 = Opp
so that's x
x = 4.0162 units , what ever they are
8)
the angle is 43° and we know the adjacent side and we want the Hypotenuse , now i'll pic CAH since it's got those pieces in it
Cos(43)= 31 / Hyp
some algebra just to switch Hyp out of the denominator
Hyp = 31 / Cos(43)
some tapping on my calculator
Hyp = 41.714
That's x for the second triangle
x = 41.71 units , what ever they are
:)
Answer:
number of adults tickets sold = x = 90
number of teachers tickets = y = 45
number of students tickets = z = 145
Step-by-step explanation:
Cost of tickets
Adults = $6
Teachers = $4
Students = $2
Total tickets sold = 280
Total revenue = $1010
Let
x = number of adults tickets
y = number of teachers tickets
z = number of students tickets
x + y + z = 280
6x + 4y + 2z = 1010
If the number of adult tickets sold was twice the number of teacher tickets
x = 2y
Substitute x=2y into the equations
x + y + z = 280
6x + 4y + 2z = 1010
2y + y + z = 280
6(2y) + 4y + 2z = 1010
3y + z = 280
12y + 4y + 2z = 1010
3y + z = 280 (1)
16y + 2z = 1010 (2)
Multiply (1) by 2
6y + 2z = 560 (3)
16y + 2z = 1010
Subtract (3) from (2)
16y - 6y = 1010 - 560
10y = 450
Divide both sides by 10
y = 450/10
= 45
y = 45
Substitute y=45 into (1)
3y + z = 280
3(45) + z = 280
135 + z = 280
z = 280 - 135
= 145
z = 145
Substitute the values of y and z into
x + y + z = 280
x + 45 + 145 = 280
x + 190 = 280
x = 280 - 190
= 90
x = 90
Therefore,
number of adults tickets sold = x = 90
number of teachers tickets = y = 45
number of students tickets = z = 145