The common substance among the product(s) of the first equation and among the reactant(s) in the second equation is H2O(g). We can eliminate that as an intermediate. The overall chemical equation will thus be:
CH4(g) + 2O2(g) → CO2(g) + 2H2O(l),
which is the first answer choice.
In essence, all you’re doing here is swapping water vapor for liquid water.
Diamond and graphite are made of carbon. So is most of charcoal.
Answer:
N2 + H2 ----------》NH3
On balancing it
N2. + 3.H2------->2.NH3
( 1 mol) (3 mol) (2 mol)
1 mol of nitrogen reacts with 3 mol of hydrogen to give 2 mol of ammonia.
Likewise,
20 litres of nitrogen reacts with 60 litres of hydrogen to give 40 litres of Ammonia.
Hence, the answer is 40 Litres.
Answer:
Q = 60192 j
Explanation:
Given data:
Volume of water = 0.45 L
Initial temperature = 23°C
Final temperature = 55°C
Amount of heat absorbed = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 55°C - 23°C
ΔT = 32°C
one L = 1000 g
0.45 × 1000 = 450 g
Specific heat capacity of water is 4.18 j/g°C
Q = m.c. ΔT
Q = 450 g. 4.18 j/g°C. 32°C
Q = 60192 j