Answer:
The constant density decreases
Explanation:
As the temperature of a solvent increases, the solubility of any gas dissolved in that solvent decreases.
For example:
when the temperature of a river, lake or stream is raised high , due to discharge of hot water from some industrial process the solubility of the oxygen in the water is decreased .The fish and the other organisms that live in the water bodies such as rivers, ponds, lakes etc can survive only in the presence of oxygen and decrease in the concentration of the water due to increased temperature can lead to the death of the fish and this may in turn damage the ecosystem.
In the above example, water is considered as the solvent and the oxygen is considered as the solute. When the temperature of the solvent that is water increases, the solubility of the gas that is oxygen in the solvent decreases.
Therefore the answer is decreases
Answer:
english:
Solid is the state in which matter maintains a certain volume and shape; liquid is the state in which matter conforms to the shape of its container, but varies only slightly in volume; gas is the state in which matter expands to fill the volume and shape of its container.
español:
Sólido es el estado en el que la materia mantiene cierto volumen y forma; el líquido es el estado en el que la materia se adapta a la forma de su recipiente, pero varía sólo ligeramente en volumen; el gas es el estado en el que la materia se expande para ocupar el volumen y la forma de su recipiente.
Answer:
The equilibrium constant for the reversible reaction = 0.0164
Explanation:
At equilibrium the rate of forward reaction is equal to the rate of backwards reaction.
The reaction is given as
A ⇌ B
Rate of forward reaction is first order in [A] and the rate of backward reaction is also first order in [B]
The rate of forward reaction = |r₁| = k₁ [A]
The rate of backward reaction = |r₂| = k₂ [B]
(Taking only the magnitudes)
where k₁ and k₂ are the forward and backward rate constants respectively.
k₁ = 0.010 s⁻¹
k₂ = 0.0610 s⁻¹
|r₁| = 0.010 [A]
|r₂| = 0.016 [B]
At equilibrium, the rate of forward and backward reactions are equal
|r₁| = |r₂|
k₁ [A] = k₂ [B] (eqn 1)
Note that equilibrium constant, K, is given as
K = [B]/[A]
So, from eqn 1
k₁ [A] = k₂ [B]
[B]/[A] = (k₁/k₂) = (0.01/0.0610) = 0.0163934426 = 0.0164
K = [B]/[A] = (k₁/k₂) = 0.0164
Hope this Helps!!!
Answer:
structure of a muscle cell
Answer:
3. It should restate the question
4. a controlled experiment
5. if I freeze a tennis ball then it will not bounce as high
Explanation: