Answer:
On the Moh's scale of hardness, aluminum oxide is positioned just below to diamond due to which it is considered as one of the hardest known compounds. This also shows that the compound exhibit an enormous amount of lattice energy, as to transform the oxide into its constituent ions, the energy is required to overcome.
Based on the chemical formula of the compound, that is, Al2O3, it is shown that the ions of Al3+ and O2- are kept close due to the activity of the strong electrostatic ionic bonds. The electrostatic forces and the ionic bonding between the ions are extremely robust due to the presence of the ions high charge density. Therefore, to dissociate the bonds, an enormous amount of energy is needed, and at the same time, a high amount of lattice energy is present.
Answer: B2H6 (g) + 3O2 (g) → B2O3 (s) + 3H2O (g) (ΔH = -2035 kJ/mol) 3H2O (g) → 3H2O (l) (ΔH = -132 kJ/mol) 3H2O (l) → 3H2 (g) + (3/2) O2 (g) (ΔH = 858 kJ/mol)
Explanation: ??
Answer: 1,4,1 for the reactants
3,1,4,1 for the products
Explanation:
The products are equal to the reactants because of the conservation of matter.
Answer:
Covalent bonds usually occur between nonmetals. For example, in water (H2O) each hydrogen (H) and oxygen (O) share a pair of electrons to make a molecule of two hydrogen atoms single bonded to a single oxygen atom. ... Covalent compounds tend to be soft, and have relatively low melting and boiling points.
Because if they are not balanced, then the amount of reaction is not equal to the amount of the product. You must have the same ratio of atoms on both sides of the equation because we are not losing moles of each element.