<u> Increasing pH will increase the solubility of the Hg2(CN)2 by shifting </u><u>equilibrium </u><u>to right side.</u>
What is the meaning of OH in chemistry?
The chemical group, ion, or radical OH that consists of one atom of hydrogen and one of oxygen and is neutral or negatively charged.
Hg2(CN)2 + 2OH- ----> 2HgO(s) + 2HCN
adding OH- to the mercury(l) cyanide will cause the formation of the solid HgO.
therefore increasing pH will increase the solubility of the Hg2(CN)2 by shifting equilibrium to right side.
Learn more about OH
brainly.com/question/2911201
#SPJ4
In a combustion of a hydrocarbon compound, 2 reactions are happening per element:
C + O₂ → CO₂
2 H + 1/2 O₂ → H₂O
Thus, we can determine the amount of C and H from the masses of CO₂ and H₂O produced, respectively.
1.) Compute for the amount of C in the compound. The data you need to know are the following:
Molar mass of C = 12 g/mol
Molar mass of CO₂ = 44 g/mol
Solution:
0.5008 g CO₂*(1 mol CO₂/ 44 g)*(1 mol C/1 mol CO₂) = 0.01138 mol C
0.01138 mol C*(12 g/mol) = 0.13658 g C
Compute for the amount of H in the compound. The data you need to know are the following:
Molar mass of H = 1 g/mol
Molar mass of H₂O = 18 g/mol
Solution:
0.1282 g H₂O*(1 mol H₂O/ 18 g)*(2 mol H/1 mol H₂O) = 0.014244 mol H
0.014244 mol H*(1 g/mol) = 0.014244 g H
The percent composition of pure hydrocarbon would be:
Percent composition = (Mass of C + Mass of H)/(Mass of sample) * 100
Percent composition = (0.13658 g + 0.014244 g)/(<span>0.1510 g) * 100
</span>Percent composition = 99.88%
2. The empirical formula is determined by finding the ratio of the elements. From #1, the amounts of moles is:
Amount of C = 0.01138 mol
Amount of H = 0.014244 mol
Divide the least number between the two to each of their individual amounts:
C = 0.01138/0.01138 = 1
H = 0.014244/0.01138 = 1.25
The ratio should be a whole number. So, you multiple 4 to each of the ratios:
C = 1*4 = 4
H = 1.25*4 = 5
Thus, the empirical formula of the hydrocarbon is C₄H₅.
3. The molar mass of the empirical formula is
Molar mass = 4(12 g/mol) + 5(1 g/mol) = 53 g/mol
Divide this from the given molecular weight of 106 g/mol
106 g/mol / 53 g/mol = 2
Thus, you need to multiply 2 to the subscripts of the empirical formula.
Molecular Formula = C₈H₁₀
<u>Answer:</u> The acceleration of the object is 2m/s^2. If net force increases, acceleration will also increase and if mass increases, the acceleration will decrease.
<u>Explanation:</u>
Force is defined as the product of object's mass and acceleration.
Mathematically,
F = ma ......(1)
or,
a = F/m .....(2)
where,
F = Force exerted on an object = 60N
m = mass of an object = 30kg
a = acceleration of the object = ?
Putting values in above equation, we get:
a = 60 kg.m/s^2/30 kg = 2m/s^2
The acceleration of the car is 2m/s^2.
From equation 2, it is visible that acceleration is directly proportional to force. This means that \if force increases, acceleration also increases.
And acceleration is inversely proportional to mass of the object. This means that if mass increases, the acceleration decreases.
Hence, if net force increases, acceleration will also increase and if mass increases, the acceleration will decrease.
Answer:
The bombarding particle is a Proton
Explanation:
A Nuclear transmutation reaction occurs when radioactive element decay, usually converting them from one element/isotope into another element. Transmutation is the process which causes decay, generally, alpha or beta.
¹⁶₈O(P,alpha) ¹³₇N, can be written as
¹⁶₈O + x goes to ¹³₇N + ⁴₂He
Where x can be anything, balancing the equation in order to give us the correct amount of proton number and nucleus number
16 + x = 13 + 4
x = 17 – 16 = 1, Hence we can say that x = ¹₁P
<u>¹⁶₈O + ¹₁P goes to ¹³₇N + ⁴₂He</u>
Here we can clearly see the bombarding particle is ¹₁P (proton). The ejected particle being ⁴₂He which is also known as an alpha particle