Answer:
when CO2 gas is passed through lime water it turns milky due to the formation of calcium carbonate which formula is CaCO3.
Ca(OH)2+ CO2------ CaCO3
when excess of carbon dioxide is passed through calcium carbonate calcium hydrogen carbonate is formed and solution become colourless.
CaCO3+CO2------ Ca(HCO3)
Answer:
All of the above processes have a ΔS < 0.
Explanation:
ΔS represents change in entropy of a system. Entropy refers to the degree of disorderliness of a system.
The question requests us to identify the process that has a negative change of entropy.
carbon dioxide(g) → carbon dioxide(s)
There is a change in state from gas to solid. Solid particles are more ordered than gas particles so this is a negative change in entropy.
water freezes
There is a change in state from liquid to solid. Solid particles are more ordered than liquid particles so this is a negative change in entropy.
propanol (g, at 555 K) → propanol (g, at 400 K)
Temperature is directly proportional to entropy, this means higher temperature leads t higher entropy.
This reaction highlights a drop in temperature which means a negative change in entropy.
methyl alcohol condenses
Condensation is the change in state from gas to liquid. Liquid particles are more ordered than gas particles so this is a negative change in entropy.
Malleability described the property of physical deformation under some compressive stress; a malleable material could, for example, be hammered into thin sheets. Malleability is generally a property of metallic elements: The atoms of elemental metals in the solid state are held together by a sea of indistinguishable, delocalized electrons. This also partially accounts for the generally high electrical and thermal conductivity of metals.
In any case, only one of the elements listed here is a metal, and that’s copper. Moreover, the other elements (hydrogen, neon, and nitrogen) are gases under standard conditions, and so their malleability wouldn’t even be a sensible consideration.
The answer is the option B. Nucleotide<span>. Nucleotides are organic molecules formed by three units :one or more phosphate groups, a sugar with five carbons (ribose or deoxyribose) and a nitrogenous base. Nucleotids are the units that form the two nucleic acid polymers: DNA and the RNA.</span>