Answer:
A
Explanation:
This is because in the graph shown line A has a quite greater impact of refraction than line B .
Hence, we can conclude that line A has the greater reaction at a faster rate.
The amino acids are the molecules where we can found the carboxyl group (-
), amino group (-
), hydrogen atom (H) and a residual R-group. On the structure of the residual R-group the name of the amino acid depends. Like if R is hydrogen (H) the amino acid is alanine; If R- group is a phenyl group i.e.
, the compound is called phenyl alanine. The structure of the general amino acid skeleton can be shown as-
Answer:
It makes the pasta to get hot faster and boil quicker.
Explanation:
Adding salt to water actually raises the boiling point of the water, due to a phenomenon called boiling point elevation. Essentially, adding any non-volatile solute such as salt to a liquid causes a decrease in the liquid’s vapour pressure. A liquid boils when the vapour pressure above it equals atmospheric pressure, so a lower vapour pressure means you need a higher temperature to boil the water. The reason salt makes water boil faster has to do with specific heat capacities, or the energy it takes to raise the temperature of a substance. Salt ions dissolved in water bind to water molecules, holding them stable and making it harder for them to move around. As a result, the non-salt bound water molecules receive more of the energy provided by the stove, and therefore they get hot faster and boil quicker.
95.6 cal
are needed.
Explanation:
Use the following equation:
q
=
m
c
Δ
T
,
where:
q
is heat energy,
m
is mass,
c
is specific heat capacity, and
Δ
T
is the change in temperature.
Δ
T
=
T
final
−
T
initial
Known
m
=
125 g
c
Pb
=
0.130
J
g
⋅
∘
C
T
initial
=
17.5
∘
C
T
final
=
42.1
∘
C
Δ
T
=
42.1
∘
C
−
17.5
∘
C
=
24.6
∘
C
Unknown
q
Solution
Plug the known values into the equation and solve.
q
=
(
125
g
)
×
(
0.130
J
g
⋅
∘
C
)
×
(
24.6
∘
C
)
=
400. J
(rounded to three significant figures)
Convert Joules to calories
1 J
=
0.2389 cal
to four significant figures.
400
.
J
×
0.2389
cal
1
J
=
95.6 cal
(rounded to three significant figures)
95.6 cal
are needed.
Max Planck concluded that energy is not continuous and is carried in discontinuous units which he named quanta.