Answer:
0.1 m
Explanation:
The closest distance the electrodes used in an NCV test in oerder to measure
the voltage change as a response to the stimulus is 0.1 m.
This is because the shortest observable time period is not less than the action-potential time response of 1 mili second the length traveled by the sensation during this time is 1 m sec x 100 m / s =0.1 m, which is the shortest distance the electrodes could be positioned on the nerve.
Answer:
18.9 m.
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Final velocity (v) = 70 km/h
Height (h) =?
Next, we shall convert 70 km/h to m/s. This can be obtained as follow:
3.6 km/h = 1 m/s
Therefore,
70 km/h = 70 km/h × 1 m/s / 3.6 km/h
70 km/h = 19.44 m/s
Finally, we shall determine the height. This can be obtained as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 19.44 m/s
Acceleration due to gravity (g) = 10 m/s²
Height (h) =?
v² = u² + 2gh
19.44² = 0² + (2 × 10 × h)
377.9136 = 0 + 20h
377.9136 = 20h
Divide both side by 20
h = 377.9136 / 20
h = 18.9 m
Thus, the car will fall from a height of 18.9 m
To summarize, an object moving in uniform circular motion is moving around the perimeter of the circle with a constant speed<span>. While the </span>speed<span> of the object is</span>constant<span>, its </span>velocity<span> is </span>changing<span>. </span>Velocity<span>, being a vector, has a </span>constant<span>magnitude </span>but<span> a </span>changing<span> direction.</span>
Sound source is at rest, you are moving with velocity v, f = frequency, c = speed of sound:
f = f0(1 + v/c)
115 = 100(1 + v/343)
115 = 100 + 100v/343
15 = 100v/343
v = 15*343/100
<span>
v = 51,45 m/s </span>