Acceleration = (change in speed) / (time for the change)
change in speed = (speed at the end) - (speed at the beginning)
change in speed = (37 km/hr) - (89 km/hr) = -52 km/hr
Acceleration = (-52 km/hr) / (6 sec)
Acceleration = (-26/3) km/(hr·sec)
Units: (1/hr·sec) · (hr/3600 sec) = 1 / 3600 sec²
(-26/3) km/(hr·sec) = (-26/3) km/(3600 sec²)
= -26,000/(3 · 3600) m/s²
<em>Acceleration = -2.41 m/s²</em>
Answer:
8.854 pF
Explanation:
side of plate = 0.1 m ,
d = 1 cm = 0.01 m,
V = 5 kV = 5000 V
V' = 1 kV = 1000 V
Let K be the dielectric constant.
So, V' = V / K
K = V / V' = 5000 / 1000 = 5
C = ε0 A / d = 8.854 x 10^-12 x 0.1 x 0.1 / 0.01 = 8.854 x 10^-12 F
C = 8.854 pF
That would be only rotational motion
Answer:
The acceleration of the car, a = -3.75 m/s²
Explanation:
Given data,
The initial velocity of the airplane, u = 75 m/s
The final velocity of the plane, v = 0 m/s
The time period of motion, t = 20 s
Using the I equations of motion
v = u + at
a = (v - u) / t
= (0 - 75) / 20
= -3.75 m/s²
The negative sign indicates that the plane is decelerating
Hence, the acceleration of the car, a = -3.75 m/s²
Answer:
A) 
B) 
C) 
D) mosquitoes speed in part B is very much larger than that of part C.
Explanation:
Given:
- Distance form the sound source,

- sound intensity level at the given location,

- diameter of the eardrum membrane in humans,

- We have the minimum detectable intensity to the human ears,

(A)
<u>Now the intensity of the sound at the given location is related mathematically as:</u>
..........................................(1)



<em>As we know :</em>


is the energy transferred to the eardrums per second.
(B)
mass of mosquito, 
<u>Now the velocity of mosquito for the same kinetic energy:</u>



(C)
Given:
- Sound intensity,

<u>Using eq. (1)</u>



Now, power:



Hence:




(D)
mosquitoes speed in part B is very much larger than that of part C.