Answer:
D. Photosynthesis uses carbon dioxide while cellular produces carbon dioxide
Answer:
Phase C - Liquid State
Phase E - Gaseous State
Explanation:
Usually, in phases of water, we have the following;
When temperature is less than zero, it is said to be in its solid phase as ice.
When temperature is between 0 to 100, we can say it is in the liquid phase as water.
When temperature is above 100°C, It is said to be in the gaseous phase as vapour.
From the diagram;
Phase C is the only liquid state because it falls between temperature of 0°C and 100°
Also, only phase E is in the gaseous phase because the temperature is above 100°C.
Answer:
The molar mass of lysine using the ideal gas equation for this problem is 146.25 g/mole.
Explanation:
The ideal gas equation PV = nRT, was derived from the ABC laws (Avogadros, Boyles and Charles laws). We need to obtain the value for the number of moles n.
The parameters of this equation are:
P = 1.918 atm
V = 750.0mL = 0.75L
n = ?
R = 0.0821
T = 25 degree celcius = 25 + 273 = 298 degree kelvin.
From this formular, n = (PV)/(RT)
n = (1.918 X 0.75)/(0.0821 X 298 )
n = 0.0588
n, no of mole = mass/molar mass
0.0588 = 8.6/MM
MM = 8.6/0.0588
MM = 146.25g/mole.
Answer:
0.0042 M is the molarity of tartaric acid in this sample of wine.
Explanation:
To calculate the concentration of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is tartaric acid
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:


0.0042 M is the molarity of tartaric acid in this sample of wine.