Answer:
0.120M is the concentration of the solution
Explanation:
<em>Assuming the mass of sodium nitrate dissolved was 2.552g</em>
<em />
Molar concentration is an unit of concentration widely used in chemsitry defined as the moles of solute (In this case NaNO3) in 1L of solution.
To find this question we must find the moles of NaNO3 in 2.552g. With this mass and the volume (250mL = 0.250L) we can find molar concentration as follows:
<em>Moles NaNO3 -Molar mass: 84.99g/mol-</em>
2.552g * (1mol / 84.99g) = 0.0300 moles NaNO3
<em>Molar concentration:</em>
0.0300 moles NaNO3 / 0.250L =
<h3>0.120M is the concentration of the solution</h3>
Answer:
The correct answer is 160.37 KJ/mol.
Explanation:
To find the activation energy in the given case, there is a need to use the Arrhenius equation, which is,
k = Ae^-Ea/RT
k1 = Ae^-Ea/RT1 and k2 = Ae^-Ea/RT2
k2/k1 = e^-Ea/R (1/T2-1/T1)
ln(k2/k1) = Ea/R (1/T1-1/T2)
The values of rate constant k1 and k2 are 3.61 * 10^-15 s^-1 and 8.66 * 10^-7 s^-1.
The temperatures T1 and T2 are 298 K and 425 K respectively.
Now by filling the values we get:
ln (8.66*10^-7/3.61*10^-15) = Ea/R (1/298-1/425)
19.29 = Ea/R * 0.001
Ea = 160.37 KJ/mol
Answer:
The mass of objects remains constant throughout the universe. This is because an object is made of he same amount of matter (atoms), no matter where you take it in the universe. If you take an object from the Earth to the moon, only the weight will change.
Explanation:
Answer:
Some substances dissolve when you mix them with water. When a substance dissolves, it might look like it has disappeared, but in fact it has just mixed with the water to make a transparent (see-through) liquid called a solution.
Explanation:
Answer:
The hydroxyl group
Explanation:
The molecular formulas of the above alcohols are
CH₃CH₂-OH
CH₃CH₂CH₂CH₂CH₂CH₂CH₂CH₂-OH
CH₃-OH
CH₃CH(CH₃)CH₂CH₂-OH
The functional group that is characteristic of all alcohols is the hydroxyl group (-OH).