If the ground is level, then the snowball can never have
any more kinetic energy than it hand when it left your hand.
If more mass sticks to it as it makes its way across the lawn,
then it must slow down, so that its
KE = (1/2) (present mass) (present speed)²
never exceeds the KE you gave it when you tossed it.
And we're not even talking yet about all the energy it loses
by scraping through the snow and mashing down the blades
of grass in its path.
V^2-u^2=2as
v=final velocity=unkown
u=initial velocity=0 m/s, because freely falling
a=acceleration due to gravity=9.8 m/s^2
s=distance (here height) traveled=4.5m
therefore the final velocity,
v^2=2*9.8*4.5
v=<span>9.39m/s</span>
Answer: assuming that the billiard balls are of identical weight the impacted billiard ball will move forward at around 0.5m/s (not considering energy conservation). The ball impacting the 2nd one would stop because most of its Kinetic energy would have been transferred into the not moving ball.
Explanation: hope this helps!
The first law of thermodynamics is the law of conservation of energy. It states that energy is always conserved. ... To keep a machine moving, the energy applied should stay with the machine without any losses. Because of this fact alone, it is impossible to build perpetual motion machines.