1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masja [62]
3 years ago
12

describe how acceleration and velocity are related and specify if these are scalar and vector quantities

Physics
1 answer:
vitfil [10]3 years ago
8 0

Velocity is the rate of change in distance over change in time, this can be written as:

v = Δd / Δt

While acceleration is the rate of change in velocity over change in time, this is written as:

a = Δv / Δt

 

<span>Both quantities are vector quantities because negative values means that the acceleration or velocity is acting on the opposite direction.</span>

You might be interested in
A cart moves along a track at a velocity of 3.5 cm/s. When a force is applied to the cart, its velocity increases to 8.2 cm/s. I
Lorico [155]

Answer:

3.13cm/s²

Explanation:

Given

Initial velocity u = 3.5cm/s

Final velocity v = 8.2cm/s

Time t = 1.5secs

Required

Acceleration of the cart a

To get that, we will use the equation of motion

v = u+at

Substitute the given parameters

8.2 = 3.5+1.5a

1.5a = 8.2-3.5

1.5a = 4.7

a = 4.7/1.5

a = 3.13cm/s²

Hence the acceleration to the cart is 3.13cm/s²

3 0
3 years ago
A 0.5 kg block of aluminum (caluminum=900J/kg⋅∘C) is heated to 200∘C. The block is then quickly placed in an insulated tub of co
Genrish500 [490]

Answer: When 1.0kg of aluminium block is used, the final temperature of the mixture will be T = 36.2∘C

If 1.0kg copper block is used, T of the mixture will be = 17.4∘C

If 100g (0.1kg) of ice at 0∘C is used, T will be = 64.9∘C

If 25g (0.025Kg) of ice is used, T will be= 147.1∘C

Explanation:

H = mcΘ

heat lost by block = heat gained by water

m₁c₁Θ₁ = m₂c₂Θ₂ where m₁ is mass of aluminium, m₂ is mass of water, c₁ is cAluminium, c₂ is cWater, Θ₁ is temperature change for aluminium, Θ₂ is temperature change for water.

0.5*900*(200-20) = m₁*4186*(20-0)

m₁ = 450*180/83270

<em>m₁ = 0.973kg</em>

<em>when 1.0kg of aluminium block is used, the final temperature of the mixture will be </em><em>T</em>

heat lost by block = heat gained by water

1.0*900*(200-T) = 0.973*4186*(T-0)

180000 - 900T = 4073T

4973T = 180000

T = 180000/4973 = 36.2∘C

<em>If 1.0kg copper block is used, T of the mixture will be</em>

heat lost by block = heat gained by water

1.0*387*(200-T) = 0.973*4186*(T-0)

77400 - 387T = 4073T

4460T = 77400

T = 77400/4460 = 17.4∘C

<em>If 100g (0.1kg) of ice at 0∘C is used, T will be</em>

<em>heat lost by block = heat gained by water + heat used in melting ice to form water at 0∘C</em>

heat used in melting 0.1kg of ice, H = ml, where l= 33600J/Kg

0.5*900*(200-T) = 0.1*4186*(T-0) + 0.1*33600J/Kg

90000 - 450T =  418.6T + 33600

418.6T + 450T = 90000 - 33600

868.6T = 56400

T = 56400/868.6 = 64.9∘C

If 25g (0.025Kg) of ice is used, T will be

0.5*900*(200-T) = 0.025*4186*(T-0) + 0.025*33600J/Kg

90000 - 450T =  104.65T + 8400

104.65T + 450T = 90000 - 8400

554.65T = 81600

T = 81600/554.65 = 147.1∘C

7 0
3 years ago
Two charged objects separated by some distance attract each other. If the charges on both objects are doubled with no change in
Serggg [28]

Answer:

(a) The force between them quadruples

Explanation:

According to coulomb's law, initial force between the two charged objects is given as;

F_1=\frac{Kq_1q_2}{r^2}

where;

k is coulomb's constant

q₁ is the charge on the first object

q₂ is the charge on the second object

r is the distance between the two objects

When the charges on both objects are doubled, then;

q₁ = 2q₁

q₂ = 2q₂

Force between the two charged objects will become

F_2 = \frac{K2q_12q_2}{r^2} =  \frac{4Kq_1q_2}{r^2} = 4(\frac{Kq_1q_2}{r^2}) = 4F_1

Therefore, the force between them quadruples

4 0
3 years ago
Imagine a universe in which, like in ours, there are two kinds of charges (positive and negative), with the like charges repelli
GuDViN [60]

Answer:

the static charge is not always distributed on the surface of the conductor, there are also charges in the volume but of lesser magnitude

Explanation:

In this hypothetical system the electric force is of type

       F = k' \frac{q_1 q_2 }{r^2}

in this case the force decays to zero much faster,

if we call Fo the force of Coulomb's law

         F₀ = k \frac{q_1 q_2 }{r^2}

assuming the constant k is the same

the relationship between the two forces is

        F / F₀ = 1 / r

        F = F₀ / r

when analyzing this expression the force decays much faster to zero.

In an electric conductor, charges of the same sign may not feel any repulsive force from other charges that are at a medium distance, so there is a probability that some charges are distributed in the volume of the material, this does not happen with coulomb's law

Consequently, the static charge is not always distributed on the surface of the conductor, there are also charges in the volume but of lesser magnitude

5 0
3 years ago
The material in which a wave travels is called ____.
jeyben [28]
   The material in which a wave travels is called a medium. Hope this helps!
8 0
3 years ago
Read 2 more answers
Other questions:
  • **URGENT PLEASE HELP**
    14·2 answers
  • A solid conducting sphere carrying charge q has radius a. It is inside a concentric hollow conducting sphere with inner radius b
    5·1 answer
  • What two things must occur in order to perform work on an object?
    11·1 answer
  • A person uses a waterproof computer to generate a simple musical tone underwater. It takes 8 s for the tone to travel 3,000 m. I
    10·1 answer
  • A mass spectrometer is being used to separate common oxygen-16 from the much rarer oxygen-18, taken from a sample of old glacial
    7·1 answer
  • A gas has an initial volume of 24.6 L at a pressure of 1.90 atm and a temperature of 335 K. The pressure of the gas increases to
    14·2 answers
  • Place the following types of bridges in order, from weakest to strongest: A. Suspension bridge B. Arched bridge C. Beam bridge?
    10·2 answers
  • Visible light travels at a speed 3.0 × 108 of m/s. If red light has a wavelength of 6.5 × 10–7 m, what the frequency of this lig
    14·1 answer
  • 9. Liquid A has greater density than Liquid B. Which liquid will be exerting more pressure on the sides of the container?
    7·1 answer
  • I am giving out the answers to the 2.01 Waves quiz
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!