The answer is c. The amount of matter in an object is the concentration of the atoms inside. This can also be called density. Weight depends on density because weight =
.
The skydiver jumping from a plane high up in the sky would most likely experience various energy transformation. For starters, it would undergo a very large gravitational potential energy because of its much higher elevation. After jumping, this energy would eventually transform to kinetic energy due to the force exerted by the gravity.
Answer:F=0.0882kg
Explanation:
The period it takes to make one revolution is 1.5 seconds / revolutions,
v = r * (change in angle / change in time)
the change in angle is 2pi, for one whole revolution. the time is 1.5 second per revolution, and the radius is 0.1.
v = (2 * pi * 0.1 cm * / 1.5second
v = 0.42m/s
a=v^2/r
a=0.42^2 /0.1 =1.764m/s2
F=ma
F=0.05*1.764
F=0.0882kg
Answer:
a) 2.7s
b) 29 m/s
Explanation:
The equation for the velocity and position of a free fall are the following
-(1)
- (2)
Since the hot-air ballon is <em>descending </em>at 2.1m/s and the camera is dropped at 42 m above the ground:


To calculate the time which it takes to reach the ground we use eq(2) with x=0, and look for the positive solution of t:

t = 2.71996
Rounding to two significant figures:
t = 2.7 s
Now we calculate the velocity the camera had just before it lands using eq(1) with t=2.7s
v = -28.782 m/s
Rounding to two significant figures:
v = -29 m/s
where the minus sign indicates the downwards direction