Hey there! :)
Let's put all of our facts down first. We know that slope-intercept form is y=mx+b , where m=slope & b is the y-intercept.
So, if we're given the slope and y-intercept, then we can very simply plug those values into slope-intercept form!
Our slope is 4 and our points are (0, -1).
y = mx + by = (4)x + (-1)
Get rid of our parenthesis.y = 4x - 1
So, our equation of the line that passes through (0, -1) and has a slope of 4 is y = 4x - 1
~Hope I helped!~
Answer:
36 boys are at the camp
Step-by-step explanation:
Answer:
The equation is not a linear function.
Answer:
The volume of the composite figure is:
Step-by-step explanation:
To identify the volume of the composite figure, you can divide it in the known figures there, in this case, you can divide the figure in a cube and a pyramid with a square base. Now, we find the volume of each figure and finally add the two volumes.
<em>VOLUME OF THE CUBE.
</em>
Finding the volume of a cube is actually simple, you only must follow the next formula:
- Volume of a cube = base * height * width
So:
- Volume of a cube = 6 ft * 6 ft * 6 ft
- <u>Volume of a cube = 216 ft^3
</u>
<em>VOLUME OF THE PYRAMID.
</em>
The volume of a pyramid with a square base is:
- Volume of a pyramid = 1/3 B * h
Where:
<em>B = area of the base.
</em>
<em>h = height.
</em>
How you can remember, the area of a square is base * height, so B = 6 ft * 6 ft = 36 ft^2, now we can replace in the formula:
- Volume of a pyramid = 1/3 36 ft^2 * 8 ft
- <u>Volume of a pyramid = 96 ft^3
</u>
Finally, we add the volumes found:
- Volume of the composite figure = 216 ft^3 + 96 ft^3
- <u>Volume of the composite figure = 312 ft^3</u>