There 7 blocks of hundreds which means each such block is equivalent to 100.
There are 5 blocks of tens, which means each such block is equivalent to 10.
There are 8 blocks of ones, which means each such block is equivalent to 1.
The total of these blocks will be = 7(100) + 5(10) + 8(10) = 758
We can make several two 3-digit numbers from these blocks. An example is listed below:
Example:
Using 3 hundred block, 2 tens blocks and 4 ones block to make one number and remaining blocks to make the other number. The remaining blocks will be 4 hundred blocks, 3 tens blocks and 4 ones blocks
The two numbers we will make in this case are:
1st number = 3(100) + 2(10) + 4(1) = 324
2nd number = 4(100) + 3(10) + 4(1) = 434
The sum of these two numbers is = 324 + 434 = 758
i.e. equal to the original sum of all blocks.
This way changing the number of blocks in each place value, different 3 digit numbers can be generated.
8m+24-20+m= 9m+4. "9m+4" is the answer
Answer:
5 thirds
Step-by-step explanation:
Make 1 2/3 into a improper fraction. Now you have 5/3. 5/3-(1/3*5)=0
Therefore, 5x1/3=5/3=1 2/3
(a) From the histogram, you can see that there are 2 students with scores between 50 and 60; 3 between 60 and 70; 7 between 70 and 80; 9 between 80 and 90; and 1 between 90 and 100. So there are a total of 2 + 3 + 7 + 9 + 1 = 22 students.
(b) This is entirely up to whoever constructed the histogram to begin with... It's ambiguous as to which of the groups contains students with a score of exactly 60 - are they placed in the 50-60 group, or in the 60-70 group?
On the other hand, if a student gets a score of 100, then they would certainly be put in the 90-100 group. So for the sake of consistency, you should probably assume that the groups are assigned as follows:
50 ≤ score ≤ 60 ==> 50-60
60 < score ≤ 70 ==> 60-70
70 < score ≤ 80 ==> 70-80
80 < score ≤ 90 ==> 80-90
90 < score ≤ 100 ==> 90-100
Then a student who scored a 60 should be added to the 50-60 category.
Answer:
-19
Step-by-step explanation: