The apparent weight of a 1.1 g drop of water is 4.24084 N.
<h3>
What is Apparent Weight?</h3>
- According to physics, an object's perceived weight is a characteristic that describes how heavy it is. When the force of gravity acting on an object is not counterbalanced by a force of equal but opposite normality, the apparent weight of the object will differ from the actual weight of the thing.
- By definition, an object's weight is equal to the strength of the gravitational force pulling on it. It follows that even a "weightless" astronaut in low Earth orbit, with an apparent weight of zero, has almost the same weight that he would have if he were standing on the ground; this is because the gravitational pull of low Earth orbit and the ground are nearly equal.
Solution:
N = Speed of rotation = 1250 rpm
D = Diameter = 45 cm
r = Radius = 22.5 cm
M = Mass of drop = 1.1 g
Angular speed of the water = 


Apparent weight is given by


= 4.24084 N
Know more about Apparent weight brainly.com/question/14323035
#SPJ4
Question:
The spin cycle of a clothes washer extracts the water in clothing by greatly increasing the water's apparent weight so that it is efficiently squeezed through the clothes and out the holes in the drum. In a top loader's spin cycle, the 45-cm-diameter drum spins at 1250 rpm around a vertical axis. What is the apparent weight of a 1.1 g drop of water?
A) Claim 1: Plates move, which can cause earthquakes.
Explanation:
The Plate Tectonic Theory proves the claim of plate move, causing earthquakes.
This theory states that the earth’s crust along with the uppermost mantle is formed of several thin but large surfaced rigid patch work of plate-like structures called tectonic plates.
There are about 15 large slabs on the earth’s outer surface and constitutes the lithosphere. Lithosphere of the earth is represented by the oceanic and continental crust layer and the uppermost mantle layer.
These plates move or slide relative with each other. These plates form divergent, convergent, or transform boundaries. Slips or faults along these boundaries forms subduction zones leading to great stress. This prevents normal gliding motion resulting in earthquakes.
Answer:

Explanation:
In an ideal transformer, the ratio of the voltages is proportional to the ratio of the number of turns of the windings. In this way:

In this case:

Therefore, using the previous equation and the data provided, let's solve for
:

Hence, the number of loops in the secondary is approximately 41667.