Amplitude modulation is used in AM radio.
Answer is A.
As per Newton's II law we know that

here F = force applied
m = mass of object = 2 kg
a = acceleration = 2 m/s^2
now as per above formula we will have


so here applied force on the ball will be 4 N
A. static discharge <span>Static discharge is the sudden flow of electricity between two electrically charged objects caused by contact, an electrical short, or dielectric breakdown.</span>
(1) The position around equilibrium of an object in simple harmonic motion is described by

where
A is the amplitude of the motion

is the angular frequency.
The velocity is the derivative of the position:

where

is the maximum velocity of the object.
The acceleration is the derivative of the velocity:

where

is the maximum acceleration of the object.
We know from the problem both maximum velocity and maximum acceleration:


From the first equation, we get

(1)
and if we substitute this into the second equation, we find the angular fequency

while the amplitude is (using (1)):

(b) We found in the previous step that the angular frequency of the motion is

But the angular frequency is related to the period by

and so, the period is
Answer:
C. 85%
Explanation:
A cylinder fitted with a piston exists in a high-pressure chamber (3 atm) with an initial volume of 1 L. If a sufficient quantity of a hydrocarbon material is combusted inside the cylinder to produce 1 kJ of energy, and if the volume of the chamber then increases to 1.5 L, what percent of the fuel's energy was lost to friction and heat?
A. 15%
B. 30%
C. 85%
D. 100%
work done by the system will be
W=PdV
p=pressure
dV=change in volume
3tam will be changed to N/m^2
3*1.01*10^5
W=3.03*10^5*(1.5-1)
convert 0.5L to m^3
5*10^-4
W=3.03*10^5*5*10^-4
W=152J
therefore
to find the percentage used
152/1000*100
15%
100%-15%
85% uf the fuel's energy was lost to friction and heat