I think there's a typo because the answer I'm getting is very large.
This is what I'm getting
--------------------------------------
c = speed of light
c = 3.0 x 10^8 m/sec approximately
This is roughly 300 million meters per second
The time it takes the signal to reach the aircraft and come back is 1.4 x 10^3 seconds. Half of this time period is going one direction (say from the radar station to the aircraft), so (1.4 x 10^3)/2 = 7.0 x 10^2 seconds is spent going in this one direction.
distance = rate*time
d = r*t
d = (3.0 x 10^8) * (7.0 x 10^2)
d = (3.0*7.0) x (10^8*10^2)
d = 21.0 x 10^(8+2)
d = 21.0 x 10^10
d = (2.1 x 10^1) * 10^10
d = 2.1 x (10^1*10^10)
d = 2.1 x 10^11 meters
d = 210,000,000,000 meters (this is 210 billion meters; equivalent to roughly 130,487,950 miles)
Answer:
10628.87 J
Explanation:
We are given that
Force applied =F=5592 N

Displacement=D=3.79 m
We have to find the work done in sliding the piano up the plank at a slow constant rate.
Work done=
The perpendicular component of force=
Work done =
Hence, the work done in sliding the piano up the plank at a slow constant rate=10628.87 J
Answer:
a new moon is quite near the Sun in the sky
Explanation:
Answer: Reflection is the only process in which the wave does not continue moving forward.
Explanation:
Reflection is a process in which the direction of the wave changes when it is exposed to a bounce off barrier. Refraction can be defined as the change in the direction of the wave when the wave passes through one medium to another. Diffraction is a process in which the direction of the wave changes when the wave passes through a particular opening near the barrier.
It lets the viewer know it's something to do with underwater.