1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bogdan [553]
3 years ago
10

A 0.500-kg glider, attached to the end of an ideal spring with force constant undergoes shm with an amplitude of 0.040 m. comput

e (a) the maximum speed of the glider; (b) the speed of the glider when it is at (c) the magnitude of the maximum acceleration of the glider; (d) the acceleration of the glider at (e) the
Physics
1 answer:
Nikitich [7]3 years ago
8 0
There is a missing data in the text of the problem (found on internet):
"with force constant<span> k=</span>450N/<span>m"

a) the maximum speed of the glider

The total mechanical energy of the mass-spring system is constant, and it is given by the sum of the potential and kinetic energy:
</span>E=U+K=  \frac{1}{2}kx^2 + \frac{1}{2} mv^2
<span>where
k is the spring constant
x is the displacement of the glider with respect to the spring equilibrium position
m is the glider mass
v is the speed of the glider at position x

When the glider crosses the equilibrium position, x=0 and the potential energy is zero, so the mechanical energy is just kinetic energy and the speed of the glider is maximum:
</span>E=K_{max} =  \frac{1}{2}mv_{max}^2
<span>Vice-versa, when the glider is at maximum displacement (x=A, where A is the amplitude of the motion), its speed is zero (v=0), therefore the kinetic energy is zero and the mechanical energy is just potential energy:
</span>E=U_{max}= \frac{1}{2}k A^2
<span>
Since the mechanical energy must be conserved, we can write
</span>\frac{1}{2}mv_{max}^2 =  \frac{1}{2}kA^2
<span>from which we find the maximum speed
</span>v_{max}= \sqrt{ \frac{kA^2}{m} }= \sqrt{ \frac{(450 N/m)(0.040 m)^2}{0.500 kg} }=  1.2 m/s
<span>
b) </span><span> the </span>speed<span> of the </span>glider<span> when it is at x= -0.015</span><span>m

We can still use the conservation of energy to solve this part. 
The total mechanical energy is:
</span>E=K_{max}=  \frac{1}{2}mv_{max}^2= 0.36 J
<span>
At x=-0.015 m, there are both potential and kinetic energy. The potential energy is
</span>U= \frac{1}{2}kx^2 =  \frac{1}{2}(450 N/m)(-0.015 m)^2=0.05 J
<span>And since 
</span>E=U+K
<span>we find the kinetic energy when the glider is at this position:
</span>K=E-U=0.36 J - 0.05 J = 0.31 J
<span>And then we can find the corresponding velocity:
</span>K= \frac{1}{2}mv^2
v=  \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 0.31 J}{0.500 kg} }=1.11 m/s
<span>
c) </span><span>the magnitude of the maximum acceleration of the glider;
</span>
For a simple harmonic motion, the magnitude of the maximum acceleration is given by
a_{max} = \omega^2 A
where \omega= \sqrt{ \frac{k}{m} } is the angular frequency, and A is the amplitude.
The angular frequency is:
\omega =  \sqrt{ \frac{450 N/m}{0.500 kg} }=30 rad/s
and so the maximum acceleration is
a_{max} = \omega^2 A = (30 rad/s)^2 (0.040 m) =36 m/s^2

d) <span>the </span>acceleration<span> of the </span>glider<span> at x= -0.015</span><span>m

For a simple harmonic motion, the acceleration is given by
</span>a(t)=\omega^2 x(t)
<span>where x(t) is the position of the mass-spring system. If we substitute x(t)=-0.015 m, we find 
</span>a=(30 rad/s)^2 (-0.015 m)=-13.5 m/s^2
<span>
e) </span><span>the total mechanical energy of the glider at any point in its motion. </span><span>

we have already calculated it at point b), and it is given by
</span>E=K_{max}= \frac{1}{2}mv_{max}^2= 0.36 J
You might be interested in
Air escaping out from an air hose at a gas station always feels cool. Why? ​
kati45 [8]

Answer:

The air is contained at a high pressure in the tube. When it escapes from a small orifice, it suddenly expands. A large amount of its heat is absorbed in the process of expansion resulting in considerable fall in its temperature. This is why the escaping air feels cold.

8 0
2 years ago
Example: A wooden crate with mass 100kg is at rest on a stone floor. You know that the coefficients of kinetic and static fricti
alexgriva [62]

Answer

Any force greater 490N

Explanation

The force required just to make an object slide over a rough horizontal surface is any force greater that the static friction which given by;

F=\mu_s mg.............(1)

Given;

\mu_s=0.5\\m=100kg\\g=9.8m/s^2

Hence;

F = 0.5 x 100 x 9.8

F = 490N.

We will only need the coefficient of kinetic friction if we were asked to find the force required to keep the object moving uniformly. Usually, the force needed to keep an object moving uniformly over a rough surface is lesser that which is needed to start its motion.

In this problem, we were only asked to find the minimum force required to make the object move which we have done.

7 0
3 years ago
If we increase the force applied to an object, and all other factors remain the same, the amount of work will
soldier1979 [14.2K]
The question doesn't give us enough information to answer.
The answer depends on the mass of the object, how long the force
acts on the object, the OTHER forces on the object, and whether the
object is free to move.

-- If you increase the force with which you push on a brick wall,
the amount of work done remains unchanged, namely Zero.

-- If you push on a pingpong ball with a force of 1 ounce for 1 second,
the ball accelerates substantially, it moves a substantial distance, and
so the work done is substantial.

-- But if you push on a battleship, even with a much bigger force ...
let's say 1 pound ... and keep pushing for a month ... the ship accelerates
microscopically, moves a microscopic distance, and the work done by
your force is microscopic. 
3 0
3 years ago
Read 2 more answers
A train travels at 100 km/h heading east to reach a town in 4 hours. The train then reversed ad heads west at 50 km/h for 4 hour
Phantasy [73]
What’s something goes up but never comes down?
3 0
3 years ago
A passenger plane is travelling down the runway with a speed of 20km/h, then speeds up with constant acceleration over 2.4km. Af
Ilia_Sergeevich [38]
Hope this answer helps m =)

6 0
3 years ago
Other questions:
  • Work is the product of force and an object's
    5·2 answers
  • **HELP ASAP**
    13·1 answer
  • You rapidly swirl a mixture of substances with different densities
    13·1 answer
  • A train travels 98 kilometers in 4 hours, and then 61 kilometers in 3 hours. What is its average speed?
    11·1 answer
  • EXPERTS/TRUSTED HELPERS/GENIUSES/ACE HeLP ASAP
    11·1 answer
  • A ball is tossed with enough speed straight up so that it is in the air several seconds. (a) What is the velocity of the ball wh
    7·1 answer
  • A class of students performed the heat transfer experiment shown in the picture. In the experiment, three plastic dishes were pa
    5·1 answer
  • Select the correct answer.
    13·1 answer
  • Why is a flower not a good blackbody radiator?
    12·1 answer
  • If you subtract vector 3.7 cm at 45° North of East from vector 4.5 cm at 57° West of North using a scale drawing, what is the re
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!