1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bogdan [553]
3 years ago
10

A 0.500-kg glider, attached to the end of an ideal spring with force constant undergoes shm with an amplitude of 0.040 m. comput

e (a) the maximum speed of the glider; (b) the speed of the glider when it is at (c) the magnitude of the maximum acceleration of the glider; (d) the acceleration of the glider at (e) the
Physics
1 answer:
Nikitich [7]3 years ago
8 0
There is a missing data in the text of the problem (found on internet):
"with force constant<span> k=</span>450N/<span>m"

a) the maximum speed of the glider

The total mechanical energy of the mass-spring system is constant, and it is given by the sum of the potential and kinetic energy:
</span>E=U+K=  \frac{1}{2}kx^2 + \frac{1}{2} mv^2
<span>where
k is the spring constant
x is the displacement of the glider with respect to the spring equilibrium position
m is the glider mass
v is the speed of the glider at position x

When the glider crosses the equilibrium position, x=0 and the potential energy is zero, so the mechanical energy is just kinetic energy and the speed of the glider is maximum:
</span>E=K_{max} =  \frac{1}{2}mv_{max}^2
<span>Vice-versa, when the glider is at maximum displacement (x=A, where A is the amplitude of the motion), its speed is zero (v=0), therefore the kinetic energy is zero and the mechanical energy is just potential energy:
</span>E=U_{max}= \frac{1}{2}k A^2
<span>
Since the mechanical energy must be conserved, we can write
</span>\frac{1}{2}mv_{max}^2 =  \frac{1}{2}kA^2
<span>from which we find the maximum speed
</span>v_{max}= \sqrt{ \frac{kA^2}{m} }= \sqrt{ \frac{(450 N/m)(0.040 m)^2}{0.500 kg} }=  1.2 m/s
<span>
b) </span><span> the </span>speed<span> of the </span>glider<span> when it is at x= -0.015</span><span>m

We can still use the conservation of energy to solve this part. 
The total mechanical energy is:
</span>E=K_{max}=  \frac{1}{2}mv_{max}^2= 0.36 J
<span>
At x=-0.015 m, there are both potential and kinetic energy. The potential energy is
</span>U= \frac{1}{2}kx^2 =  \frac{1}{2}(450 N/m)(-0.015 m)^2=0.05 J
<span>And since 
</span>E=U+K
<span>we find the kinetic energy when the glider is at this position:
</span>K=E-U=0.36 J - 0.05 J = 0.31 J
<span>And then we can find the corresponding velocity:
</span>K= \frac{1}{2}mv^2
v=  \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 0.31 J}{0.500 kg} }=1.11 m/s
<span>
c) </span><span>the magnitude of the maximum acceleration of the glider;
</span>
For a simple harmonic motion, the magnitude of the maximum acceleration is given by
a_{max} = \omega^2 A
where \omega= \sqrt{ \frac{k}{m} } is the angular frequency, and A is the amplitude.
The angular frequency is:
\omega =  \sqrt{ \frac{450 N/m}{0.500 kg} }=30 rad/s
and so the maximum acceleration is
a_{max} = \omega^2 A = (30 rad/s)^2 (0.040 m) =36 m/s^2

d) <span>the </span>acceleration<span> of the </span>glider<span> at x= -0.015</span><span>m

For a simple harmonic motion, the acceleration is given by
</span>a(t)=\omega^2 x(t)
<span>where x(t) is the position of the mass-spring system. If we substitute x(t)=-0.015 m, we find 
</span>a=(30 rad/s)^2 (-0.015 m)=-13.5 m/s^2
<span>
e) </span><span>the total mechanical energy of the glider at any point in its motion. </span><span>

we have already calculated it at point b), and it is given by
</span>E=K_{max}= \frac{1}{2}mv_{max}^2= 0.36 J
You might be interested in
Vapor pressure is related to the temperature of the liquid. user: in an open system, the vapor pressure is equal to the _____. i
iVinArrow [24]

Answer

-Directly;  outside air pressure

Vapor pressure is directly related to the temperature of the liquid. user: in an open system, the vapor pressure is equal to the outside air pressure.

Explanation;

-As the temperature of a system increases, the average kinetic energy of the molecules increases in both the liquid and gas phases.

-A higher average kinetic energy facilitates the escape of molecules from the liquid phase into the gas phase. At the same time, the rate of return of gas phase molecules to the liquid also increases. A new equilibrium point is reached at a higher gaseous vapor pressure. The increase in vapor pressure with temperature is exponential.


6 0
3 years ago
Read 2 more answers
Which type of personality theory believes that processes such as anticipating, judging, memory, and IMITATION of MODELS help sha
Alina [70]

Answer:

social cognitive theory

Explanation:

The social-cognitive perspective on personality is a theory that stress out cognitive processes, such as thinking and judging, in the development of personality. These cognitive processes contribute to learned behaviors that are central to one’s personality, it helps shapes a person and who they are.

6 0
3 years ago
Humans are a part of the Earth system. List at least three examples of how you, in particular, influence one or more of Earth’s
Naily [24]

Answer:

True, The humans have modified their environment the ecological system

Explanation:

  • Human is a part of the earth system and they are included in the ecological system that in particular is concerned with the provision of the feedback mechanism and cyclic flow of the system of energy such as the atmosphere, cryosphere, and the biosphere and the hydrosphere.
  • The human has already and influences the earth's physical system alike that of the atmospheric system in terms of the climate changes and the global warming that is taking place at a massive scale.  
  • They are influencing the soil and land systems in terms of the depletion resources and the disturbing the hydrological cycles on earth that further influence the amounts of rainfall patterns.
  • <u>The three examples</u><u> </u><u>given above are those of the use of the natural resources and thereby depletion of resources which are needed to sustain the functioning of the planet and various fields of the economics and the geology and that of the socio systems are also impacted and these forms the earth's major sphere of life.</u>
8 0
4 years ago
Find the angle of depression from the top of a lighthouse 250 feet above water level to the water line of a ship 2.5 miles offsh
Rudik [331]
Height of the lighthouse = 250 feet
Distance of the ship from the shore = 2.5 miles
We already know that
1 mile = 5280 feet
Then
2.5 miles = 5280 * 2.5
               = 13200 feet
Now, to find the angle of depression, we can use the formula
<span>θ = <span>tan<span>−1 </span></span>(13200/250)
</span>   = 1.50 degrees
I hope that this is the answer that you were looking for and the answer has come to your desired help. 
4 0
3 years ago
A metal cylinder with a mass of 4.20 kg is attached to a spring and is able to oscillate horizontally with negligible friction.
kherson [118]

Answer:

a) k = 120 N / m

, b)    f = 0.851 Hz

, c)  v = 1,069 m / s

, d)  x = 0

, e)  a = 5.71 m / s²

, f)   x = 0.200 m

, g)  Em = 2.4 J

, h) v = -1.01 m / s

Explanation:

a) Hooke's law is

         F = k x

         k = F / x

          k = 24.0 / 0.200

          k = 120 N / m

b) the angular velocity of the simple harmonic movement is

        w = √ k / m

        w = √ (120 / 4.2)

        w = 5,345 rad / s

Angular velocity and frequency are related.

       w = 2π f

        f = w / 2π

        f = 5.345 / 2π

        f = 0.851 Hz

c) the equation that describes the movement is

        x = A cos (wt + Ф)

As the body is released without initial velocity, Ф = 0

        x = 0.2 cos wt

Speed ​​is

       v = dx / dt

       v = -A w sin wt

The speed is maximum for sin wt = ±1

       v = A w

       v = 0.200 5.345

       v = 1,069 m / s

d) when the function sin wt = -1 the function cos wt = 0, whereby the position for maximum speed is

       x = A cos wt = 0

       x = 0

e) the acceleration is

       a = d²x / dt² = dv / dt

       a = - Aw² cos wt

The acceleration is maximum when cos wt = ± 1

       a = A w²

        a = 0.2   5.345

        a = 5.71 m / s²

f) the position for this acceleration is

       x = A cos wt

       x = A

       x = 0.200 m

g) Mechanical energy is

        Em = ½ k A²

        Em = ½ 120 0.2²

       Em = 2.4 J

h) the position is

         x = 1/3 A

Let's calculate the time to reach this point

         x = A cos wt

        1/3 A = A cos 5.345t

         t = 1 / w cos⁻¹(1/3)

The angles are in radians

t = 1.23 / 5,345

t = 0.2301 s

Speed ​​is

v = -A w sin wt

v = -0.2 5.345 sin (5.345 0.2301)

v = -1.01 m / s

i) acceleration

a = -A w² sin wt

a = - 0.2 5.345² cos (5.345 0.2301)

      a = -1.91 m / s²

5 0
3 years ago
Other questions:
  • Two soccer players kick the same 1-kg ball at the same time in opposite directions. one kicks with a force of 20 n; the other ki
    8·2 answers
  • A packing crate rests on a horizontal surface. It is acted on by three horizontal forces: 600 N to the left, 200 N to the right,
    6·1 answer
  • A 60-W, 120-V light bulb and a 200-W, 120-V light bulb are connected in series across a 240-V line. Assume that the resistance o
    5·1 answer
  • Moving from 0m/s to 25m/s in 8.0s equals an average acceleration of...
    13·2 answers
  • ]A nuclear power plant produces huge amount of electricity. However, it dumps radioactive wastes into the sea. This has led to a
    9·2 answers
  • Analyze how buffers allow you to eat acidic and basic foods without changing your blood pH.
    14·1 answer
  • An AC voltage source of amplitude 10V is supplied across an inductor and a resistor wired in series. The voltage amplitude acros
    12·1 answer
  • Which of the following is the BEST explanation for why oceans have two different types of currents?
    12·1 answer
  • What is a period in physics?<br>​
    10·1 answer
  • Friction is defined as *
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!