1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bogdan [553]
3 years ago
10

A 0.500-kg glider, attached to the end of an ideal spring with force constant undergoes shm with an amplitude of 0.040 m. comput

e (a) the maximum speed of the glider; (b) the speed of the glider when it is at (c) the magnitude of the maximum acceleration of the glider; (d) the acceleration of the glider at (e) the
Physics
1 answer:
Nikitich [7]3 years ago
8 0
There is a missing data in the text of the problem (found on internet):
"with force constant<span> k=</span>450N/<span>m"

a) the maximum speed of the glider

The total mechanical energy of the mass-spring system is constant, and it is given by the sum of the potential and kinetic energy:
</span>E=U+K=  \frac{1}{2}kx^2 + \frac{1}{2} mv^2
<span>where
k is the spring constant
x is the displacement of the glider with respect to the spring equilibrium position
m is the glider mass
v is the speed of the glider at position x

When the glider crosses the equilibrium position, x=0 and the potential energy is zero, so the mechanical energy is just kinetic energy and the speed of the glider is maximum:
</span>E=K_{max} =  \frac{1}{2}mv_{max}^2
<span>Vice-versa, when the glider is at maximum displacement (x=A, where A is the amplitude of the motion), its speed is zero (v=0), therefore the kinetic energy is zero and the mechanical energy is just potential energy:
</span>E=U_{max}= \frac{1}{2}k A^2
<span>
Since the mechanical energy must be conserved, we can write
</span>\frac{1}{2}mv_{max}^2 =  \frac{1}{2}kA^2
<span>from which we find the maximum speed
</span>v_{max}= \sqrt{ \frac{kA^2}{m} }= \sqrt{ \frac{(450 N/m)(0.040 m)^2}{0.500 kg} }=  1.2 m/s
<span>
b) </span><span> the </span>speed<span> of the </span>glider<span> when it is at x= -0.015</span><span>m

We can still use the conservation of energy to solve this part. 
The total mechanical energy is:
</span>E=K_{max}=  \frac{1}{2}mv_{max}^2= 0.36 J
<span>
At x=-0.015 m, there are both potential and kinetic energy. The potential energy is
</span>U= \frac{1}{2}kx^2 =  \frac{1}{2}(450 N/m)(-0.015 m)^2=0.05 J
<span>And since 
</span>E=U+K
<span>we find the kinetic energy when the glider is at this position:
</span>K=E-U=0.36 J - 0.05 J = 0.31 J
<span>And then we can find the corresponding velocity:
</span>K= \frac{1}{2}mv^2
v=  \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 0.31 J}{0.500 kg} }=1.11 m/s
<span>
c) </span><span>the magnitude of the maximum acceleration of the glider;
</span>
For a simple harmonic motion, the magnitude of the maximum acceleration is given by
a_{max} = \omega^2 A
where \omega= \sqrt{ \frac{k}{m} } is the angular frequency, and A is the amplitude.
The angular frequency is:
\omega =  \sqrt{ \frac{450 N/m}{0.500 kg} }=30 rad/s
and so the maximum acceleration is
a_{max} = \omega^2 A = (30 rad/s)^2 (0.040 m) =36 m/s^2

d) <span>the </span>acceleration<span> of the </span>glider<span> at x= -0.015</span><span>m

For a simple harmonic motion, the acceleration is given by
</span>a(t)=\omega^2 x(t)
<span>where x(t) is the position of the mass-spring system. If we substitute x(t)=-0.015 m, we find 
</span>a=(30 rad/s)^2 (-0.015 m)=-13.5 m/s^2
<span>
e) </span><span>the total mechanical energy of the glider at any point in its motion. </span><span>

we have already calculated it at point b), and it is given by
</span>E=K_{max}= \frac{1}{2}mv_{max}^2= 0.36 J
You might be interested in
I need the right answer ASAP NO LINKS!!!
Jet001 [13]

Answer:

models are only used by scientists

5 0
3 years ago
In the formula 4h²o how many total hydrogen atoms are there
Helen [10]
There are 8 hydrogen atoms
6 0
3 years ago
An 80-kg quarterback jumps straight up in the air right before throwing a 0.43-kg football horizontally at 15 m/s . Suppose that
RUDIKE [14]

Answer:

0.0241875 m

Explanation:

m_1 = Mass of quarterback = 80 kg

m_2 = Mass of football = 0.43 kg

v_1 = Velocity of quarterback

v_2 = Velocity of football = 15 m/s

Time taken = 0.3 seconds

In this system as the linear momentum is conserved

m_1v_1+m_2v_2=0\\\Rightarrow v_1=-\frac{m_2v_2}{m_1}\\\Rightarrow v_1=-\frac{0.43\times 15}{80}\\\Rightarrow v_1=0.080625\ m/s

Assuming this velocity is constant

Distance=Velocity\times Time\\\Rightarrow Distance=0.080625\times 0.3\\\Rightarrow Distance=0.0241875\ m

The distance the quarterback will move in the horizontal direction is 0.0241875 m

4 0
3 years ago
How does newtons law of the universal gravitation help scientist describe the universe
Afina-wow [57]
You need to know everything is made of atoms they are always colliding and they are never still because you'd think that every thing in space is still all the time even if it's not making visibly
5 0
3 years ago
Read 2 more answers
Before using a string in a comparison, you can use either the To Upper method or the To Lower method to convert the string to up
diamong [38]

Answer:

True, check attachment for code

Explanation:

To convert java strings of text to upper or lower case, we can use and inbuilt methods To Uppercase and To lower case.

The first two lines of code will set up a String variable to hold the text "text to change", and then we print it out.

The third line sets of a second String variable called result.

The fourth line is where the conversion is done.

We can compare the string

We can compare one string to another. (When comparing, Java will use the hexadecimal values rather than the letters themselves.) For example, if we wanted to compare the word "Fat" with the word "App" to see which should come first, you can use an inbuilt string method called compareTo.

Check attachment for the code

3 0
3 years ago
Other questions:
  • How can you predict the action of the element
    8·1 answer
  • 1. What is meant by half-life?
    12·1 answer
  • How far can you get away from your little sister with a squirt gun filled with paint if you can travel at 3 m/s and you have 15s
    5·1 answer
  • The speed v of a sound wave traveling in a medium that has bulk modulus b and mass density ρ (mass divided by the volume) is v=b
    13·1 answer
  • Derive a relation between time period anf frequency of a wave
    7·1 answer
  • Will mark as brainliest!
    10·1 answer
  • Liquid pressure does not depend on
    6·1 answer
  • A projectile has an initial horizontal velocity of 34.0 M/s at the edge of a roof top. Find the horizontal and vertical componen
    13·1 answer
  • 6. What is not an example of mechanical energy?
    14·1 answer
  • Write a rule for the sequence. 3, -3, -9, -15. A. Start with 3 and add -6 repeatedly B. Start with -6 and add 3 repeatedly C. St
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!