Answer:
Ball A
Explanation:
Let the initial speed of the balls be u .
Angle of projection for ball A = 20°
Angle of projection for ball B = 75°
As we know that at highest point, the ball has only horizontal speed which always remains constant throughout the motion because the acceleration in horizontal direction is zero.
Speed of ball A at highest point = u Cos 20° = 0.94 u
Speed of ball B at highest point = u Cos 75° = 0.26 u
So, the ball A has bigger speed than B.
Hey there mate :)
Even if two persons are given the same work load, the speed of the work done gets different by the energy of those persons.
No one is sure that he/she can complete the work within the time. He may or may not.
Also, the physical characteristics makes the work different. If one person has so much power to work all day, the other person may not have.
Therefore, <em>even if two persons do the same amount of work , they may have different power</em><em>.</em>
Your weight on the moon given the data from the question is 110.5 N
<h3>Definition of mass and weight </h3>
Mass is simply defined as the quantity of matter present in an object. The mass of an object is constant irrespective of the location of the object.
Weight is simply defined as the gravitational pull on an object. The weight of an object varies from place to place due to gravity.
<h3>Relationship between mass and weight </h3>
Mass and weight are related according to the following equation
Weight (W) = mass (m) × Acceleration due to gravity (g)
<h3>How to determine the weight on the moon</h3>
- Mass (m) = 65 Kg
- Acceleration due to gravity on the moon (g) = 1.7 m/s²
- Weight (W) =?
W = mg
W = 65 × 1.7
W = 110.5 N
Learn more about mass and weight:
brainly.com/question/14684564
#SPJ1
Answer:
The answer is I=70,513kgm^2
Explanation:
Here we will use the rotational mechanics equation T=Ia, where T is the Torque, I is the Moment of Inertia and a is the angular acceleration.
When we speak about Torque it´s basically a Tangencial Force applied over a cylindrical or circular edge. It causes a rotation. In this case, we will have that T=Ft*r, where Ft is the Tangencial Forge and r is the radius
Now we will find the Moment of Inertia this way:
->
Replacing we get that I is:
Then
In case you need to find extra information, keep in mind the Moment of Inertia for a solid cylindrical wheel is: