A pendulum is probably the most common showing of this example. As the pendulum swings down, it converts its potential energy (height) into kinetic energy (velocity). At the lowest point the kinetic energy is the highest and the potential is the lowest. At the highest point in its swing the velocity is zero so the kinetic energy is zero and the potential energy is at a maximum (greatest height).
For this problem, we use the conservation of momentum as a solution. Since momentum is mass times velocity, then,
m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
where
v₁ and v₂ are initial velocities of cart A and B, respectively
v₁' and v₂' are final velocities of cart A and B, respectively
m₁ and m₂ are masses of cart A and B, respectively
(7 kg)(0 m/s) + (3 kg)(0 m/s) = (7 kg)(v₁') + (3 kg)(6 m/s)
Solving for v₁',
v₁' = -2.57 m/s
<em>Therefore, the speed of cart A is at 2.57 m/s at the direction opposite of cart B.</em>
Answer:
the total force vector, on test charge is points from origin to point C( 1, 1 )
Explanation:
Given the data in the question, as illustrated in the image below;
from the Image, OA = 1, OB = AC = 1
so using Pythagoras theorem
a² = b² + c²
a = √( b² + c² )
so
OC = √( OB² + AC² )
we substitute
OC = √( OA² + AC² )
OC = √( 1² + 1² )
OC = √( 1 + 1 )
OC = √2
Coordinate of C( 1, 1 )
Hence, the total force vector, on test charge is points from origin to point C( 1, 1 )
An object distance is
presented as s = 5f and we know that the mirror equation relates the image
distance to the object distance and the focal length.
The mirror equation is
1/f = 1/s + 1/s’ where the variable f stands for
the focal length of the mirror. Variable (s)
represents the distance between the mirror surface and the object and the
variable <span>(s’) represents the distance between the mirror surface and
the image. </span>
In addition, a concave mirror
will have a positive focal length (f) and a convex mirror will have a negative
focal length (f).
Now, we then have 1/f = 1/5f
+ 1/s’ which is s’ = 5f/4
Then we get the magnification
ratio that expresses the size or amount of magnification or reduction of the
object or image and to get the magnification, we use this equation: M= s’/s
M= 5f/4x5f
s’ = 1/4s
Therefore, the image height
is one fourth of the object height
Before positive psychology, the main focus was mostly pathology, that is, studying various psychological issues and sometimes finding ways to treat them, or sometimes not and just studying them for the sake of studying them and noting their occurrence.