Answer:
I believe the answer is A. There would be a decreased number of snakes
Explanation:
Answer:
C. The enzyme changes shape and is no longer able to bind the substrate.
Explanation:
The change in heat changed the size of the enzyme. The enzyme changed size and shape which made it incapable of bonding with the substrate.
who is this Justin Bieber??!
First-pass effect.
The first-pass effect involves drugs that are given PO and absorbed from the small intestine directly into the portal venous system, which delivers the drug molecules to the liver. Once in the liver, enzymes break the drug into metabolites; they may become active or may be deactivated and readily excreted from the body. A large percentage of the oral dose is usually destroyed and never reaches tissues. Oral dosages account for this phenomenon to ensure an appropriate amount of the drug in the body to produce a therapeutic action. Passive diffusion is the major process through which drugs are absorbed into the body. Active transport is a process that uses energy to actively move a molecule across a cell membrane and is often involved in drug excretion in the kidney. Glomerular filtration is the passage of water and water-soluble components from the plasma into the renal tubule.
Answer:
Bridgham et al. (2006) showed that the interaction between a steroid hormone (aldosterone-M) and its receptor (mineralocorticoid) evolved by Darwinian gradualism. In this work, the authors demonstrated a primitive affinity between the hormone and its receptor that was initially present in chemically similar but more ancient ligands. This result has implications in understanding the association between gene duplication and the evolution of hormone signaling pathways. For example, in invertebrates, this work reinforces the importance of gene duplication in the existing interaction between paralogous glucocorticoid receptors and their receptor mineralocorticoid genes that were derived from duplication (Thornton 2001).
The publications above cited are the following:
J.T. Bridgham, S.M. Carroll, and J.W. Thornton (2006). Evolution of hormone-receptor complexity by molecular exploitation. Science, 312(5770), 97-101.
JW Thornton. Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions, Proc Natl Acad Sci USA (PNAS), 2001, vol. 98 10 (pg. 5671-5676).