The atomic number of Fluorine is 9
Valence (outer) electron configuration is : 2s²2p⁵
Therefore, it requires 1 electron in the p-orbital to complete its octet of 8 electrons.
Thus, the atom Fluorine generally will become <u>more </u>stable through the formation of an ionic chemical compound by accepting <u>1 </u> electron from another atom. This process will fill its outer energy level.
Ans: A) more, 1
Answer:
, 
Explanation:
The change in energy is given by the change in gravitational potential energy:



The average rate of change in terms of time is approximately this:



Answer:
Clear Communication
Explanation:
Clear communication in key when working with a team on a project. Without communication things get messy. Having clear communication with your team mates helps to prevent miscommunication, issues in planning and completing the project, and more. Clear communication can also help you to hear everybody out to come out with the best version of your project and to prevent fighting that would take up time that you could be working.
Answer:
NH3
Explanation:
2NH3(aq)+CO2(aq)→CH4N2O(aq)+H2O(l)
So for two moles of NH3 we need one mole of CO2. So let's count moles for each reagent.
n(NH3)=m(NH3)/M(NH3)=135700/17,03=7968.29 mol
n(CO2)=m(CO2)/M(CO2)=211400/44.01=4803.45 mol
From equation we have to divide n(NH3) by 2 because we need two equivalent per one CO2. That will be 3984.145. So the limiting agent is NH3 because it's not enough of it to react with all CO2
Answer:
Na₁₁ = 1s² 2s² 2p⁶ 3s¹
Explanation:
Sodium is present in group 1.
It is alkali metal.
It has one valence electron.
The atomic number of sodium is 11.
Its atomic mass is 23 amu.
The longhand notation of electronic configuration of sodium can be written as,
Na₁₁ = 1s² 2s² 2p⁶ 3s¹
The electronic configuration in shorthand notation( noble gas) would be written as,
Na₁₁ = [Ne] 3s¹
Sodium loses its one valence electron to complete the octet and get stable thus form +1 cation.
It react with halogen and form salt. Such as sodium chloride.
2Na + Cl₂ → 2NaCl