<span>Important information to solve the exercise :
Substance ΔHf (kJ/mol):
HCl(g)= −92.0 </span><span>kJ/mol
Al(OH)3(s)= −1277.0 </span><span><span>kJ/mol
</span> H2O(l)= −285.8 </span><span>kJ/mol
AlCl3(s) =−705.6 </span><span>kJ/mol
</span><span>Al(OH)3(s)+3HCl(g)→AlCl3(s)+3H2O(l)
reactants products
products- reactants:</span><span>
(−705.6) + (3 x −285.8) - ( −1277.0 ) - (3 x −92.0 ) = - 10.0 </span>kJ per mole at 25°C
<span>
</span>
Answer:
The answer is "29.081"
Explanation:
when the empty 2.00 L container of 1000 kg, a sample of HI (9.30 x 10-3 mol) has also been placed.




Its density of I 2 was 6.29x10-4 M if the balance had been obtained, then we have to get the intensity of equilibrium then:

It is defined that:


Now, we calculate the position:
For the reaction
, you can calculate the value of Kc at 1000 K.
data expression for Kc


calculating the reverse reaction



Answer:
Faraday's constant will be smaller than it is supposed to be.
Explanation:
If the copper anode was not completely dry when its mass was measured, mass of the copper must be heavier than it should have been. Hence, the calculated Faraday’s constant would be smaller than it is supposed to be since when calculating Faraday’s Constant, the charge transferred is divided by the moles of electrons.
Because fluorine has a higher electronegativity
Cheeze is the most one i hope it helps